86121 (Теорема Дирихле)

2016-07-30СтудИзба

Описание файла

Документ из архива "Теорема Дирихле", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86121"

Текст из документа "86121"

Содержание

Введение 2

1. Характеры 3

1.1 Определение характера. Основные свойства характеров 3

1.2 Суммы характеров. Соотношение ортогональности 6

1.3 Характеры Дирихле 8

2. L-функция Дирихле 13

3. Доказательство теоремы Дирихле 29


Введение

Простые числа расположены в натуральном ряде весьма неравномерно.

Целью данной работы является доказательство следующей теоремы о простых числах в арифметической прогрессии.

Теорема Дирихле. Если разность и первый член арифметической прогрессии есть взаимно простые натуральные числа, то она содержит бесконечное множество простых чисел.

Пусть

mn + l, n=1,2, …,

прогрессия, удовлетворяющая условию теоремы.

Условие (m, l)=1, наложенные на числа m и e в формулировке теоремы, естественно, поскольку в случае, когда d=(m, l)>1, все члены прогрессии делятся на d и поэтому не являются простыми числами.

Сформулированная теория была впервые высказана Л. Эйлером в 1783 г. В 1798 г. А. Лежандр опубликовал доказательство для четных m, использовавшее, как выяснилось позднее, одну ошибочную лемму.

Полностью доказал теорему в 1837–1839 гг. Петер Густав Лежен-Дирихле (1805–1859), немецкий математик, автор трудов по аналитической теории чисел, теории функций, математической физике.

В 1837 г. вышли две работы Дирихле, посвященные теореме о простых числах в арифметической прогрессии. Они содержали формулировку теоремы в общем виде, однако доказательство приводилось только для случая, когда разность прогрессии есть простое число. В конце второй работы содержится построение характеров для произвольного модуля и некоторые утверждения о том, как можно доказать утверждение L (1,χ)0 для неглавных характеров x в одном случае. В 1839 г. Дилихле опубликовал полное доказательство теоремы о простых числах в арифметической прогрессии. С тех пор она носит его имя.


1. Характеры

1.1 Определение характера. Основные свойства характеров

Х арактером (от греческого хараæτήp-признак, особенность) χ конечной абелевой группы G называется не равная тождественно нулю комплекснозначная функция, определенная на этой группе и обладающая тем свойством, что если, АG и BG

χ (АВ)= χ (А) χ(В).

Обозначим через Е единичные элементы в группе G и через А-1 обратный элемент для АG

Характеры группы G обладают следующими свойствами:

1. Если Е-единица группы, то для каждого характера χ

χ (Е)=1 (1.1)

Доказательство. Пусть для каждого элемента АG справедливо неравенство

1(А)=(АЕ)= (А) χ (Е)

Из этого равенства получим, что (Е)0. Теперь из равенства

(Е)= (ЕЕ)= (Е) (Е)=1

следует равенство (1.1)

2. (А) 0 для каждого АG

Действительно, если бы χ (А) =0 для некоторого АG, то

(А) χ (А-1)= (АА-1)= χ (Е)=0,

а это противоречит свойству 1.

3. Если группа G имеет порядок h, то Аh=Е для каждого элемента АG Следовательно,

1= χ (Е)= χ (Аh)= χ (А)h,

то есть χ (А) есть некоторый корень степени h из единицы.

Характер χ1, обладающий свойством χ1(А)=1 для каждого элемента АG, называется главным характером группы G. Остальные характеры называются неглавными.

Лемма 1. Пусть Н подгруппа конечной абелевой группы G, причем G/H – циклическая порядка n, тогда для каждого характера χH – подгруппы Н существует ровно n характеров.

Доказательство. Рассмотрим группу G= gkH, причем gnH=H, gnH и gn=h1=1.

Для каждого элемента XG существует и притом единственное к=кх и hх=h такое, что если 0 кх kх hх=gkh. Возьмем еще один элемент группы G, Y= gm hy, где 0 m

ХY= gк+m hhy.

Определим характер χ (X).

χ (X)= χ (gк h)= χ (gк) χ (n)= χ к (g) χ H (h).

В данном выражении неизвестным является χ (g).

χ n (g)= χ (gn)= χ (h1)= χ H(h1) – данное число.

χ (g)= – n корней из 1,

то есть ξјnn(g)= χ H(h1), получаем xk (g)= ξјn. Следовательно, x(g)= ξ1, …, ξn

Из полученных равенств получаем:

χ (X)= χ k (g) χ H(hx)= ξjkx χ H (hx)

χ (Y)= χ m (g) χ H(hy)= ξjky χ H (hy)

Определим умножение характеров

χ (X) χ (Y)= ξjky χ H (hy) ξjk-x χ H (hx)= ξjkx+ky χ H (hx) χ H (hy)= jk+m χ H (hhy)

Для того чтобы определение выполнялось, необходимо рассмотреть степень gkx+kx. Возможны два случая:

1) Если 0 кх + ky

кх + ky= kxy,; hxhy = hxy.

В этом случае определение выполняется.

2) Если n кх + ky<2n-1, то получим

кх + ky = n + kxy..

Тогда

XY= g kx+ky hxhy=ghgkx+ky-n hx hy=gkx+ky-n h1hxhy

В свою очередь 0 кх + ky – nn-1 kx+ky – n=kxy, h1hxhy = hxy.

χ (XY) = ξj kх+kу χн (hxу) = ξj kх + kу – n χн (h1) χн(hx) χн (hy) = ξjкх ξj ку ξjn χн (h1) χн(hx) χн (hy) = ξj кх χн (h) · ξj ку χн(hy) = χ (X) χ(Y).

Лемма доказана.

5. Характеры конечной мультипликативной абелевой группы G образуют конечную мультипликативную абелевую группу Ĝ.

Под произведением двух характеров χ' и х χ'' группы G будем понимать характер х, определяемый следующим свойством:

χ (AB) = χ' (A) χ'' (В)

Для любого элемента АG, имеем:

χ (АВ) = χ' (АВ) χ'' (АВ) = χ' (А) χ' (В) · χ'' (А) χ'' (В) = χ(А) χ(В)

Таким образом, получаем χ ' χ '' действительно является характером.

Роль единичного элемента группы G играет главный характер χ1

Обратным элементом G является:

χ 2 (g1 g2) = = = = χ2(g1) χ2(g1)

1.2 Суммы характеров. Соотношение ортогональности

Пусть G – конечная мультипликативная абелева группа порядка h. Рассмотрим сумму:

S = ,

где А пробегает все элементы G, и сумму

Т =

где пробегает все элементы группы характеров Ĝ.

Рассмотрим чему равна каждая из сумм.

а) Если В-фиксированный элемент группы G и А пробегает все элементы G, то АВ также пробегает все элементы группы G. Следовательно,

S· (В) = (В) = = = S.

Получили S (В) = S, откуда следует, что ( (В) – 1)·S = 0. Следовательно, возможны два варианта:

1) S = 0, то (В) – негативный характер

2) S≠0, то (В) = 1 для каждого элемента В€G и в этом случае (В)= 1(В) есть главный характер и сумма S равна порядку h группы G. Таким образом,

S = = (1.2)

б) Если мы умножим сумму Т на некоторый характер ’ группы Ĝ, то аналогичным образом получим

’ (А) Т = ’ (А) = = Т,

Следовательно,

1) или Т = 0, то А ≠Е

2) или Т ≠ 0, то ’ (А) = 1 для каждого характера ’€ G. В этом случае согласно свойству 3§ 1, имеем А=Е. И тогда Т=h. Таким образом,

Т = =


1.3 Характеры Дирихле

Пусть m – положительное целое число. Определим числовые характеры по модулю m. Мы знаем, что (m) приведенных классов вычетов по модулю m образуют мультипликативную абелеву группу порядка h=(m). Мы можем, следовательно, рассмотреть характер этой группы. Но определение характера для приведенных классов вычета по модулю m можно перенести на множество целых чисел следующим образом. Положим

(а)= (А), если аА,

где А – приведенный класс вычетов по модулю m. Тогда очевидно, (а)= (b) (mod m), и (ab)= (а) (b), если (а, m)=(b, m)=1. Поскольку (А)0 для каждого приведенного класса вычетов А, то (а)0, если (a, m)=1.

Это определение применимо только к целым числам а, которые взаимно просты с m.

Мы можем рассмотреть его на все целые числа, положив

(а)=0, если (a, m)>1.

Следовательно, характер по модулю m есть арифметическая функция , обладающая следующими свойствами:

(а)= (b), если с=b (mod m)

(ab)= (a) (b) для всех целых a и b

(а)=0, если (a, m)>1

(а)0, если (a, m)=1

Имеется точно (m) – количество характеров по модулю m, где (m) – количество положительных целых чисел, не превосходящих m и взаимно простых с m. Они образуют мультипликативную абелеву группу приведенных классов вычета по mod m. Единичным элементом этой группы будет главный характер 1, то есть такой характер, что 1(а)=1, если (а, m)=1. Далее имеем следующее соотношение ортогональности:

=

=

Пусть m – положительное целое число. Определим числовые характеры по модулю m. Комплекснозначная функция, определенная для всех целых чисел n, называется числовым характером или характером Дирихле по модулю m, она удовлетворяет следующим условиям:

а) (n) = 0 тогда и только тогда, когда (n, m) ≠ 1

б) (n) периодична с периодом m

в) для любых чисел а и b

(аb) = (а) (b)

Функция

1(n) =

является числовым характером и называется главным характером. Остальные числовые характеры по модулю m называются неглавными.

Имеет место следующее утверждение о числовых характерах.

Теорема 1 Существует равно φ(m) числовых характеров по модулю m. Если = (n) – числовой характер по модулю m, то:

1) для n, взаимно простых с модулем m, значения (n) есть корень из 1 степени φ(m).

2) для всех n выполняется неравенство / (n)/ ≤1

3) Имеет место равенство

4) Для каждого целого числа n

=

Доказательство. Пусть (n) – некоторый числовой характер по модулю m. Из пункта б) определения следует, что (n) задает некоторую функцию ’( ) = (n) на мультипликативной группе

классов вычетов по модулю m, взаимно простых с m, а именно

’( ) = (n)

Здесь обозначает класс вычетов по модулю m, содержащий n. Так как (1) ≠ 0, то ’( ) не равняется тождественно нулю, а из пункта в) определения числового характера следует, что ’( ) = ’( ) = ’ (ab) = (a) (b) = ’( )’( ).

Таким образом, ’( ) есть характер модультипликативной группы Gm.

Обратно, по каждому характеру ’( ) группы Gm можно построить числовой характер (n) по модулю m, положив

Установленное соответствие является взаимнооднозначным. И все утверждения теоремы 1 следуют из доказанного выше для групповых характеров применительно к группе Gm, если учесть, что порядок группы Gm равен φ(m), где φ(m) – функция Эйлера.

В дальнейшем требуется еще одно утверждение с числовых характерах. Обозначим для каждого , ≥ 1

Где суммирование ведется по всем натуральным числам n, не превосходящим .

Лемма 2. Пусть (n) – неглавный характер. Тогда для каждого , ≥ 1 справедливо неравенство

/S(x)/

Доказательство. Функция (n) периодична с периодом m и по теореме з

0, так как ≠ 1

Поэтому, представив [] – целую часть числа – в виде []=m1+z, 0zm, будет иметь

S() =S([])=q

В виду равенства /(n)/1 отсюда получили S()zm


2. L-функция Дирихле

Пусть х(п) – произвольный характер по модулю m. Рассмотрим ряд

, (2.1)

члены которого являются функциями комплексного переменного S. В области сходимости он определяет функцию, которая называется L-функцией Дирихле, соответствующей характеру (n), и обозначается L (s, ).

Лемма 3

1. Если 1, то ряд (1) сходится в области ReS > 0 и определяемая им функция L (s, ) является аналитической в этой области.

2. Ряд, определяющий L (S, 1), сходится в области ReS >1. Функция L (S, 1) является аналитической в области ReS > 1.

Доказательство.

Пусть (n) – произвольный характер по модулю m, а б – некоторое положительное число. Так как /(n)/ 1, то в области ReS > 1 + б справедливо неравенство

Следовательно, ряд (1) равномерно сходится в области ReS > 1 + б. Определяемая им функция L (S, ) по теореме Вейерштрасса о сумме равномерно сходящегося ряда аналитических функций является аналитической в этой области. Ввиду произвольности 6 это доказывает второе утверждение Леммы.

Для неглавных характеров (n) потребуется более сложное исследование ряда (1).

Лемма 4 (преобразование Абеля).

Пусть an, n=1,2,…, – последовательность комплексных чисел, >1,

А()=

а q(t) – комплекснозначная функция, непрерывно дифференцируемая на множестве 1t

Тогда

(2.2)

Если же

то

(2.3)

при условии, что ряд в левой части равенства сходится.

Доказательство. Положим А(0)=0 и В(х) равным левой части равенства (2.2). Тогда при любом натуральном N

так как А(0)=0. Далее

поскольку функция А(х) постоянна на каждом полуинтервале nt

пусть х1 – произвольное число. Положим N=[x]; значит, NxN+1. Тогда А(х)=А(N), B(x)=B(N), а

Следовательно,

Тем самым доказано, что равенство (2.2) верно и для нецелых чисел значений х.

Равенство (2.3) получаем из равенства (2.2) переходом к пределу при х. Лемма доказана.

Воспользовавшись леммой 4, получим следующее равенство

(2.4)

где

функция, введенная Лемме 4.

Для s = +it из области ReS = , где – некоторое положительное число, пользуясь леммой 4, находим

Поэтому интеграл

сходится в области ReS > . Поскольку в этой области выполняется неравенство

то из равенства (2) следует, что ряд (1), определяющий функцию L (S, x), сходится в области ReS > . Эти рассуждения справедливы для любого положительного числа . Значит, ряд (1) сходится в полуплоскости ReS > 0.

Из равенства (2) следует, что в этой полуплоскости для L-функции, соответствующей неглавному характеру (n), справедливо представление

(2.5)

так как

Интеграл, стоящий в правой части равенства (2.5), можно также представить в виде

(2.6)

Члены ряда (2.6) являются аналитическими функциями в области ReS >, что следует из равенств

При этом использовано, что на полуинтервале nх< n+1 функция S(х) принимает значение S(n). Поскольку

то ряд (2.6) равномерно сходится в области ReS >. Отсюда, как и выше, получаем, что сумма его, т.е.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5168
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее