85685 (Классы конечных групп F, замкнутые относительно произведения F-подгрупп, индексы которых не делятся на некоторое простое число), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Классы конечных групп F, замкнутые относительно произведения F-подгрупп, индексы которых не делятся на некоторое простое число", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85685"

Текст 3 страницы из документа "85685"

Доказательство. Доказательство проведем индукцией по порядку . Пусть --- минимальная нормальная подгруппа . Так как --- -разрешимая группа, то либо -группа, либо -группа. Если --- -группа, то . Согласно индукции, . Получили противоречие.

Пусть --- -группа. Так как , не делятся на , то . Так как --- единственная минимальная нормальная подгруппа группы и , то . Рассмотрим подгруппу . Так как , --- -группа, , то нетрудно показать, что --- -группа. Так как , то --- -замкнутая группа. Аналогичным образом можно доказать, что --- -замкнутая группа. Отсюда следует, что --- -замкнутая группа. А это значит, что . Получим противоречие. Лемма доказана.

3. Критерий принадлежности групп, факторизуемых подгруппами, индексы которых не делятся на некоторое простое число, наследственно насыщенным формациям

В данном разделе в классе разрешимых групп получено описание наследственных формаций Фиттинга , содержащих любую разрешимую группу , где и --- -подгруппы и индексы , не делятся на некоторое фиксированное простое число .

3.1 Лемма [14-A, 21-A]. Пусть --- наследственная насыщенная формация, содержащая любую разрешимую группу , где и --- -подгруппы и индексы , не делятся на некоторое фиксированное простое число . Тогда любая разрешимая минимальная не -группа принадлежит одному из следующих типов:

1) --- группа простого порядка , где ;

2) --- группа Шмидта;

3) , где , где --- максимальный внутренний локальный экран формации , --- простое число отличное от ;

4) , , , где --- -замкнутая группа, , где --- максимальный внутренний локальный экран формации , --- простое число отличное от .

Доказательство. Пусть --- произвольная разрешимая минимальная не -группа. Если , то нетрудно показать, что --- группа простого порядка , причем .

Пусть . Покажем, что --- бипримарная -подгруппа. Действительно, если --- примарная группа, то из насыщенности формации следует, что . Противоречие. Пусть . Так как --- разрешимая группа, то нетрудно показать, что , где , индексы , не делятся на . Согласно условию, . Получили противоречие. Итак, .

Пусть --- минимальная нормальная подгруппа . Если --- -группа, то . Рассмотрим случай, когда . Покажем, что в этом случае --- группа Шмидта. Вначале докажем, что --- циклическая группа. Действительно, в противном случае , где и --- максимальные подгруппы . Тогда . Так как , не делятся на , , то . Противоречие. Итак, --- циклическая группа, . Пусть . Покажем, что . Предположим противное. Пусть , где . Пусть и --- циклические группы соответственно порядков и . Обозначим через регулярное сплетение . И пусть --- база сплетения, т. е. . Так как некоторая подгруппа группы изоморфна , то . Очевидно, что подгруппы , принадлежат формации .

Пусть , где . Обозначим через базу сплетения . Тогда

Легко видеть, что .

Так как индексы и не делятся на , то . Но , и поэтому

Полученное противоречие показывает, что . Итак, доказали, что --- группа Шмидта. Согласно лемме 2.2.21, --- группа Шмидта. Следовательно, --- группа типа 2).

Пусть --- -группа и . Пусть . Тогда, согласно теореме 2.2.5, , где , , --- максимальный внутренний локальный экран формации . Так как , то --- -группа. Пусть . Тогда рассмотрим подгруппу . Так как --- собственная подгруппа , то . Так как , то не делится на . Так как --- разрешимая группа, то . Но тогда в существует максимальная подгруппа такая, что . Рассмотрим подгруппу . Так как --- собственная подгруппа , то . Нетрудно заметить, что не делится на и . Теперь, согласно условию, . Получили противоречие. Итак, доказали, что , то есть --- -замкнутая группа. Итак, -- группа типа 4).

Пусть теперь --- -группа. Тогда . Покажем, что . Предположим, что . Пусть . Тогда в найдется максимальная подгруппа такая, что . Рассмотрим подгруппу . Так как и --- собственные подгруппы , то они принадлежат . Очевидно, что , не делятся на и . Тогда, согласно условию, . Противоречие. Отсюда следует, что --- -замкнутая, но тогда --- -замкнута. Тот факт, что ( --- максимальный внутренний локальный экран ) следует из теоремы 2.2.5. Итак, --- группа типа 3). Лемма доказана.

3.2 Лемма [14-A, 21-A]. Пусть --- тотально насыщенная формация, содержащая любую разрешимую группу , где и --- -подгруппы и индексы , не делятся на некоторое фиксированное простое число . Тогда любая разрешимая минимальная не -группа принадлежит одному из следующих типов:

1) --- группа простого порядка , где ;

2) --- группа Шмидта;

3) --- группа Шмидта;

4) , где и , где --- группа Шмидта с нормальной -силовской подгруппой, --- простое число отличное от .

Доказательство. Согласно лемме 5.3.1, любая минимальная не -группа есть группа типа 1) -- 4) из леммы 5.3.1.

Пусть --- группа типа 3) из леммы 5.3.1. Тогда . Пусть --- максимальный внутренний локальный экран формации . Так как --- тотально насыщенная формация, то --- насыщенная формация. Согласно лемме . Пусть . Так как --- насыщенная формация, то , что невозможно. Итак, . А это значит, что --- группа простого порядка . Но тогда нетрудно заметить, что --- группа Шмидта. Согласно лемме 2.2.21, --- группа Шмидта.

Пусть --- группа типа 4) из леммы 5.3.1. Тогда

где . Покажем, что --- группа Шмидта. Так как --- тотально насыщенная формация, то --- насыщенная формация. В виду леммы 2.2.21, при доказательстве утверждений, можем считать, что . Пусть --- максимальный внутренний локальный экран формации . Согласно теореме 2.2.5,

где .

Так как --- тотально насыщенная формация, то является насыщенной формацией. Как и выше, нетрудно доказать, что . Отсюда следует, что --- группа Шмидта. Лемма доказана.

3.3 Теорема [14-A, 21-A]. Пусть --- наследственная разрешимая формация Фиттинга, --- некоторое фиксированное простое число. Тогда и только тогда содержит любую разрешимую группу , где и --- -подгруппы и индексы , не делятся на некоторое простое число , когда есть пересечение некоторых классов групп одного из следующих типов:

1) класс всех разрешимых -замкнутых групп;

2) класс всех разрешимых групп с -длиной ;

3) класс всех разрешимых групп таких, что --- -группа, где --- некоторое множество простых чисел, содержащее простое число .

Доказательство. Необходимость. Согласно результатам работы [33] является тотально насыщенной формацией. Теперь можно применить результаты леммы 5.3.2.

Пусть любая минимальная не -группа есть группа типа 1), 2) из леммы 5.3.2. Тогда является -формацией Шеметкова. Согласно теореме 5.1.4 , где --- некоторое множество простых чисел, содержащее простое число .

Пусть любая минимальная не -группа является группой типа 1), 3). Тогда --- -формация Шеметкова. Согласно теореме 5.2.2, она имеет следующее строение:

где --- некоторое множество простых чисел, содержащее простое число . Согласно лемме 5.2.3, . А это значит, что .

Пусть любая минимальная не -группа --- группа типа 1), 4). Пусть --- максимальный внутренний локальный экран формации .

Известно, что

Покажем, что для любого простого числа из , отличного от , . Предположим противное. Пусть --- группа наименьшего порядка из . Так как --- наследственная формация, то . Так как --- тотально насыщенная формация, то --- насыщенная формация. Отсюда нетрудно показать, что . Очевидно, что имеет единственную минимальную нормальную подгруппу , причем . Так как --- полный экран, то . А значит, --- -группа, где .

Согласно лемме 2.2.18, существует точный неприводимый -модуль , где --- поле из элементов. Пусть . Покажем, что . Так как точен, то . Так как , то очевидно, что . Пусть --- произвольная максимальная подгруппа из . Если , то . Отсюда следует, что . А значит, . Пусть . Тогда , где --- некоторая максимальная подгруппа из . Так как , то . Так как , то из полноты экрана следует, что . Так как --- внутренний экран, то . Итак, . Последнее противоречит тому, что --- группа типа 4) из леммы 5.3.2.

Итак, для любого из . Тогда

Отсюда нетрудно заметить, что

Рассмотрим насыщенную формацию . Так как любая минимальная не -группа либо группа простого порядка, либо группа Шмидта с ненормальной циклической -силовской подгруппой, то --- -формация Шеметкова. Согласно теореме 5.2.2,

где --- некоторое множество простых чисел, содержащее простое число . Следовательно,

Как и в лемме 5.2.3 можно показать, что . Итак, --- формация из пункта 3).

Нетрудно показать, что формация , у которой любая минимальная не -группа есть группа одного из типов 1), 2), 3), 4) леммы 5.3.2, есть пересечение некоторых формаций из пунктов 1), 2), 3) данной теоремы.

Достаточность следует из теоремы 5.1.5 и леммы 5.2.4. Теорема доказана.


Заключение

В главе 1 получено описание наследственных насыщенных -формаций Шеметкова, теорема 1.4 , и найден ряд свойств таких формаций, теорема 1.6 .

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее