85557 (Геометрия чисел)

2016-07-30СтудИзба

Описание файла

Документ из архива "Геометрия чисел", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85557"

Текст из документа "85557"

Министерство Образования Российской Федерации

ГОСУДАРСТВЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Хабаровский Государственный Педагогический Университет

Кафедра математического анализа и информатики

Курсовая работа

“Геометрия чисел”

Выполнил: =PeppeR=

Научный руководитель: доцент кафедры

мат. анализа и информатики

кандидат физ.-мат. наук

Хабаровск – 2004

Содержание.

  1. Введение. 2

  2. Постановка задачи. 3

  3. Основная задача геометрии чисел. 4

  4. Теорема Минковского. 6

  5. Доказательство теоремы Минковского. 7

  6. Решётки. 10

  7. Критические решётки. 13

8. «Неоднородная задача». 17

9. Список литературы. 18

Введение.

Возникновением теории чисел мы, по большому счёту, обязаны Минковскому. Минковский (Minkowski), Герман - выдающийся математик (1864 - 1909), еврей, родом из России. Был профессором в Бонне, Кенигсберге, Цюрихе и Геттингене. Сблизил теорию чисел с геометрией, создав особое учение о "геометрии чисел" ("Geometrie der Zahlen", 1896 - 1910; "Diophantische Approzimationen", 1907, и др.). Последняя его работа: "Raum und Zeit" (Лейпциг.,1909; несколько русских переводов); здесь дана смелая математическая формулировка так называемого "принципа относительности". Полное собрание сочинение Минковского вышло в Лейпциге, в 1911 г.; биография Минковского в русском издании "Пространство и время". Таким образом, Минковский сделал большой вклад в развитие математики как науки. В частности, он сумел упростить теорию единиц полей алгебраических чисел, а также упростил и развил теорию аппроксимации иррациональных чисел рациональными, или теорию диофантовых приближений. Под диофантовыми приближениями в данном случае понимается раздел теории чисел, изучающий приближения действительных чисел рациональными и вопросы, связанные с решением в целых числах линейных и нелинейных неравенств с действительными коэффициентами. Это новое направление, которое Минковский назвал „геометрией чисел", развилось в независимый раздел теории чисел, имеющий много приложений в самых различных вопросах и вместе с тем достаточно интересный для самостоятельного изучения.

Постановка задачи.

Для начала я хочу рассмотреть некоторые понятия и результаты, играющие в дальнейшем основную роль. Рассуждения, которыми мы здесь пользуемся, иногда значительно отличаются от рассуждений в основных книгах по данному вопросу, так как в данной работе мы имеем целью, не давая полных доказательств, сделать для простейших случаев геометрическую ситуацию интуитивно ясной, тогда как позднее мы будем вынуждены жертвовать наглядностью ради точности. В работе рассматривается основная задача геометрии чисел, приводится теорема Минковского с её доказательством, и объясняются такие понятия геометрии чисел как решётки и критические решётки. В конце работы приводится так называемая «неоднородная задача» геометрии чисел.

Основная задача геометрии чисел.

Основной и типичной задачей геометрии чисел является сле­дующая задача.

Пусть f(х1,…,xn) — функция вещественных аргументов, прини­мающая вещественные значения. Как мал может быть f(u1,…,un) при подходящем выборе целых чисел u1,…,un? Может встретиться тривиальный случай f(0,…,0)=0, например, если f(х1,…,xn) является однородной формой; в этом случае совокупность значений u1 = u2 = ... = un = 0 из рассмотрения исключается (“однородная проблема”).

Обычно рассматриваются оценки, применимые не только для кон­кретных функций f, но и для целых классов функций. Так, типичным результатом такого рода является следующее предложение. Пусть

f(x1,x2) = a11x12 + 2a12x1x2 + a22x22 (1)

- положительно определённая квадратичная форма. Тогда найдутся такие целые числа u1,u2, не равные одновременно нулю, что справедливо неравенство

f(u1,u2) (4D/3)1/2 (2)

где D = a11a22 – a122 – определитель формы. Ясно, что если этот результат верен, то он является наилучшим. Действительно,

u12 + u1u2 + u22 1

для всех пар целых чисел u1,u2, не равных одновременно нулю; здесь D = 3/4.

Конечно, случай положительно определённых бинарных квадратичных форм крайне прост, и результат задачи был известен задолго до возникновения геометрии чисел. Однако на положительно определённых бинарных квадратичных формах относительно просто проводятся некоторые рассуждения геометрии чисел, так что эти формы удобно использовать в качестве иллюстрации всех рассуждений.

Только что сформулированный результат можно выразить на­глядно. Неравенство типа

f(x1,x2) k,

где f(x1,x2) — форма (1), а k — некоторое положительное число, задает область плоскости {x1,x2}, ограниченную эллипсом. Таким образом, наше предложение утверждает, что если k (4D/3)1/2, то область содержит точку (u1,u2) с целыми координатами u1 и u2, не равными одновременно нулю.

Теорема Минковского.

Аналогичный, но, правда, не настолько точный результат немедленно следует из основной теоремы Минковского. В двумерном случае эта теорема утверждает, что область всегда содержит точку (u1,u2) с целыми координатами, отличную от начала, если эта область удовлетворяет следующим трем условиям:

  1. область симметрична относительно начала координат; т. е. если точка (x1,x2) находится в , то точка (-x1,-x2) также содержится в ;

  2. область выпукла; т. е. если (x1,x2), (y1,y2) — две какие-нибудь точки области , то и весь отрезок

{x1 + (1-)y1, x2 + (1-)y2}, 0 1,

соединяющий эти точки, также содержится в ;

3) площадь больше 4.

Любой эллипс f(x1,x2) k удовлетворяет условиям 1) и 2). Так как его площадь равна

k / (a11a22 – a12)1/2 = k / D1/2,

то он удовлетворяет условию 3), если k > 4D1/2. Таким образом, мы имеем результат, аналогичный приведенному выше предложению, если в (2) константу (4/3)1/2 заменить любым числом, большим 4/.

Доказательство теоремы Минковского.

Интересно будет кратко рассмотреть основные идеи, лежащие в основе доказательства теоремы Минковского, потому что в формальных доказательствах, приводимых основными источниками, они заслоняются необходимостью получения сильных теорем, имеющих наиболее широкие приложения.

Вместо области Минковский рассматривает область = /2, которая состоит из точек (x1/2,x2/2), где (x1,x2) точки области . Таким образом, область симметрична относительно начала координат и выпукла, её площадь равна четверти площади области и, следовательно, больше 1. В общем случае Минковский рассматривает совокупность областей (u1,u2) с центрами в целочисленных точках (u1,u2), полученных из тела параллельными переносами.

Для начала справедливо отметить, что если и (u1,u2) пересекаются, то точка (u1,u2) находится в . Обратное утверждение тривиально. Если точка (u1,u2) находится в , то точка (u1/2,u2/2) содержится как в , так и в (u1,u2). Действительно, пусть (ξ1, ξ2) – точка, лежащая в пересечении. Так как точка (ξ1, ξ2) лежит в области (u1,u2), то тогда точка (ξ1 – u1, ξ2 – u2) лежит в области ; следовательно, ввиду симметрии области точка (u1 - ξ1, u2 - ξ2) находится в . Наконец, в силу выпуклости тела середина отрезка, соединяющего точку (u1 - ξ1, u2 - ξ2) с точкой (ξ1, ξ2), то есть точка (u1/2,u2/2), лежит в , а потому точка (u1,u2) находится в . Что, собственно, и требовалось доказать. Ясно, что область (u1,u2) тогда и только тогда пересекается с областью (u1,u2), когда область пересекается с об­ластью (u1 - u1, u2 - u2).

Таким образом, чтобы теорема Минковского была доказана, достаточно показать, что если области (u1,u2) не пересекаются, то площадь области (u1,u2) не превышает 1. Небольшое размышление убеждает, что так должно быть. Другое обоснование, возможно интуитивно более ясное, можно получить, полагая, что область целиком содержится в квадрате

x1≤ X, |x2| ≤ X,

при этом нужно учитывать то, что выпуклая область конечной площади ограничена.

Пусть U — достаточно большое целое число. Существует (2U + 1)2 областей (u1,u2), координаты центров которых удовлетворяют неравенствам

u1≤ U, |u2| ≤ U.

Все эти области целиком находятся в квадрате

x1≤ U + X, |x2| ≤ U + X,

площадь которого равна

4 (U + X)2.

Так как предполагается, что области (u1,u2) не пересекаются, то имеет место неравенство

(2U + 1)2V 4(U + X)2,

где V – площадь области , а значит, и любой области (u1,u2). Устремляя теперь U к бесконечности, мы получаем неравенство V 1, что и требовалось доказать.

Решётки.

Преобразование координат в приведённом примере с определённой бинарной квадратичной формой может привести и к другой точке зрения. Мы можем представить форму f(x1,x2) как сумму квадратов двух линейных форм

f(x1, x2) = Х12 + Х22, (3)

где

Х1 = x1 + x2, X2 = x1 + x2, (4)

,,, - некоторые постоянные вещественные числа. Можно, например, положить

= a111/2, = a11-1/2a12,

= 0, = a11-1/2D1/2.

Обратно, если ,,, - такие вещественные числа, что - 0, и формы Х1, Х2 заданы равенствами (4), то выражение

Х12 + Х22 = a11x12 + 2a12x1x2 + a22x22,

г де

a11 = 2 + 2,

a12 = + , (5)

a22 = 2 + 2,

является положительно определен­ной квадратичной формой с определителем

D = a11a22 – a122 = ( - )2. (6)

Теперь будем рассматривать пару (Х1, Х2) как систему пря­моугольных декартовых координат. Тогда говорят, что точки (Х1, Х2), соответствующие целым (x1, x2) в выражениях (4), образуют (двумерную) решетку . В векторных обозначениях решетка есть совокупность точек

1, Х2) = u1(,) + u2(,), (7)

г де u1, u2 пробегают все целые числа; точки (векторы) (,) и (,) образуют базис решётки .

Рассмотрим теперь более подробно свойства решеток. Ввиду того, что мы рассматриваем решетку просто как множество точек, мы можем её описать с помощью различных базисов. Например, пара

(α – β, γ – δ), (- β, - δ)

является другим базисом решётки . Фиксированный базис (α, β), (γ, δ) решётки определяет разбиение плоскости двумя семействами равноудалённых параллельных прямых; первое семейство состоит из тех точек (Х1, Х2), которые имеют координаты вида (7), где u2 – любое целое число, а u1 – любое вещественное. Для линий второго порядка семейства u1 и u2 меняются ролями. Таким образом, плоскость разбивается на параллелограммы, вершинами которых являются как раз точки решётки .

Разумеется, что это разбиение зависит от выбора базиса. Однако, можно показать, что площадь получаемых параллелограммов, именно число

|αδ – βγ|,

не зависит от выбора базиса. Это становится возможным, если показать, что число N(X) точек решётки в достаточно большом квадрате

ζ (Х): |Х1| ≤ Х, |Х2| ≤ Х

удовлетворяет соотношению

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее