85525 (Вариации при исчислении), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Вариации при исчислении", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85525"

Текст 2 страницы из документа "85525"

Уравнение (1.26) называют уравнением Эйлера. Если предположить существование непрерывной второй производной от u(х), то уравнение (1.26) можно записать в виде

.

Таким образом, условие минимума функционала (1.13) при условии (1.14) приводит к краевой задаче для уравнения Эйлера (1.26) при тех же условиях (1.14), т.е. Существует тесная связь между вариационной задачей о минимуме функционала и краевой задачей для уравнения Эйлера для этого функционала.

Решения уравнения Эйлера (1.26), удовлетворяющие условиям (1.14) называют экстремалями функционала (1.13).

1.7 Пути решения вариационных задач

Один из путей решения вариационной задачи, т.е. задачи нахождения минимума некоторого функционала J(u) при заданных краевых условиях, состоит в сведении этой задачи к краевой задаче для дифференциального уравнения при тех же краевых условиях, которое является уравнением Эйлера для этого функционала, с последующим решением этой задачи.

Второй путь решения вариационной задачи состоит в применении вариационных методов, которые позволяют приближенно найти функцию u0, дающую минимум функционалу J(u), и удовлетворяющую заданным краевым условиям.

Рассмотрим несколько примеров решения задач вариационного исчисления, основанных на нахождении уравнений Эйлера с последующим их решением.

Пример 1.

Найти функцию у = u(х), удовлетворяющую условию

u(0) = u(1) = 0 (1.27)

и дающую минимум функционалу

(1.28)

Будем считать, что функция u(х) непрерывна и имеет непрерывные производные до второго порядка включительно.

Уравнение Эйлера для функционала (28) будет иметь вид

(1.29)

Таким образом, получили краевую задачу для линейного дифференциального уравнения второго порядка с постоянными коэффициентами. Общее решение уравнения (1.29) будет иметь вид

.

Для нахождения произвольных постоянных с1 и с2 воспользуемся краевыми условиями (1.27). В результате получим

Откуда

Следовательно, функция, дающая минимум функционалу (1.28) при условии (1.27), будет иметь вид

. (1.30)

Пример 2.

В качестве второго примера рассмотрим задачу о брахистохроне.

Как было показано ранее (см. 1.2.1), задача состоит в том, чтобы найти функцию у = u(х), удовлетворяющую условиям:

u(0) = 0, u(а) = b

и сообщающую минимум функционалу

.

В этом случае

. (1.31)

Функция (31) при u = 0 терпит разрыв. Путем несложных рассуждений показывается, что все-таки можно воспользоваться уравнением Эйлера в виде (1.26).

Уравнение (1.26) приводится к виду

(1.32)

Отсюда

.

Положим . Тогда .

Дифференцируя это выражение, получим . Замена дает дифференциальное уравнение относительно

Далее

.

Положив , получим

.

Таким образом, если решение задачи о брахистохроне имеет решение, то это решение есть циклоида.

1.8 Вторая вариация функционала. Достаточное условие минимума функционала

Рассмотрим функцию от вещественной переменной , считая и фиксированными.

Эту функцию разложим в ряд Тейлора:

(1.34)

где R1 – остаточный член ряда.

Выражение

называется второй вариацией функционала J на элементе u.

Разложение (1.34) можно записать в виде

. (1.36)

Пусть функционал J достигает минимума, относительного или абсолютного на элементе u0. Тогда , и формула (1.36) дает

. (1.37)

Из этого соотношения вытекает достаточное условие того, что элемент u0, удовлетворяющий уравнению Эйлера (экстремаль), сообщает функционалу минимальное значение. Для абсолютного минимума это условие имеет вид (учитывая, что

(1.38)

для относительного минимума оно состоит в том, что неравенство (1.38) выполняется, когда элемент достаточно мал по норме.

Условие (1.38) в конкретных задачах трудно проверить, потому что величина обычно неизвестна, и непосредственно им, как правило, воспользоваться не удается.

Поэтому для проверки достаточного условия экстремума функционала пользуются более простыми условиями.

Запишем вторую вариацию для функционала (1.13)

пользуясь определением второй вариации (1.35)

,

где .

Так как , то, предполагая наличие соответствующих производных у Ф, интегрируя по частям и принимая во внимание, что , получим

, (1.39)

где .

Считаем, что необходимое условие экстремума выполнено, т.е. и для определенности будем говорить о минимуме функционала (1.13). Функция , как функция переменной при должна иметь минимум, следовательно, необходимым условием минимума является тот факт, чтобы при любом выборе . Можно показать, что отсюда непосредственно вытекает, что вдоль экстремали должно иметь место равенство .

Условие

называют условием Лежандра.

Более сильное условие

называют усиленным условием Лежандра.

Рассмотрим интеграл, входящий в формулу (1.39), заменяя букву буквой , получим

.

Уравнение Эйлера для этого интеграла будет иметь вид

, (1.40)

причем, в этом уравнении есть коэффициент при и в силу условия , деля обе части уравнения на R, получим уравнение вида

с непрерывными в [a, b] коэффициентами p(x) и q(x). Уравнение (1.40) называют уравнением Якоби.

Пусть - решение уравнения (1.40), удовлетворяющее начальным условиям

.

Существенным для дальнейшего будет тот факт, имеет ли решение корни внутри промежутка [a, b]. Оказывается, что если такие корни имеются, то исследуемая экстремаль не может давать минимум функционалу (1.13).

Если при a < x < b, то говорят, что экстремаль u(x) в промежутке (a, b) удовлетворяет условию Якоби, а если при , то говорят, что экстремаль u(x) удовлетворяет усиленному условию Якоби. Следует заметить, что коэффициенты S и R уравнения (1.40) зависят от экстремали u(x) и, следовательно, высказанные выше условия являются условиями, накладываемыми на экстремаль u(x).

Имеет место следующая теорема. Усиленные условия Лежандра и Якоби достаточны для того, чтобы экстремаль давала слабый (местный) экстремум функционалу (1.13).

Можно показать, что если выполнены усиленные условия Лежандра и Якоби и, кроме того, положительно для всякого конечного p в некоторой области, содержащей экстремаль u(x) внутри, то эта экстремаль дает сильный (абсолютный) минимум.

Пример. Докажем, что экстремаль (1.30) (см Пример 1 в 1.8) дает функционалу (1.28) сильный минимум. Из (1.28) имеем

, , ,

Уравнение (1.40) принимает вид

его решение при условии ,

имеет вид

.

Функция на отрезке удовлетворяет усиленному условию Якоби, так как на этом отрезке она положительна. Так как то и усиленное условие Лежандра выполняется. Следовательно, экстремаль (1.30) даёт функционалу (1.28) сильный (абсолютный) минимум.

1.9 Изопериметрическая задача

Изопериметрическая задача ставится следующим образом: Даны функционалы и постоянные ; среди элементов области определения D(J) функционала J, удовлетворяющего уравнениям

(1.41)

требуется найти элемент, доставляющий функционалу J наименьшее значение.

Считается, что область

не пуста.

Частным случаем изопериметрической задачи является задача о наибольшей площади, поставленная в 2.2.

Здесь n=1.

(1.42)

За D(J) можно принять множество тех функций из С [a, b], которые обращаются в нуль при x=a и x=b (условие 3), а за – множество функций из С[1] [a, b], удовлетворяющих тем же условиям (1.3). Очевидно пересечение не пусто. Будем считать, что функционалы удовлетворяют требованиям 1,2,3. Пересечение линейных многообразий само есть линейное многообразие, поэтому существует элемент и линейное многообразие такое, что любой элемент имеет вид .

Будем считать, что множество плотно в рассматриваемом пространстве.

Справедлива теорема, принадлежащая Эйлеру и известная под названием правила множителей для изопериметрической задачи.

Теорема Эйлера: Пусть элемент решает изопериметрическую задачу. Если существуют такие элементы , что определитель

(1.43)

отличен от нуля, то найдутся такие постоянные , что

(1.44)

Рассмотренная теорема дает только необходимое условие минимума для изопериметрической задачи.

Техника решения изопериметрической задачи такова: составляя функционал

, (1.45)

где – неизвестные постоянные, и составляем для этого функционала уравнение Эйлера. Оно содержит в качестве неизвестных элемент u0 и постоянные . Эти неизвестные определяются из уравнения Эйлера (1.41) и изопериметрических равенств (1.41).

В качестве примера рассмотрим задачу о наибольшей площади (см. 2.2). В соответствии с теоремой Эйлера введем постоянный множитель и составим функционал

Уравнение Эйлера для функционала Э примет вид

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
425
Средний доход
с одного платного файла
Обучение Подробнее