85525 (Вариации при исчислении)

2016-07-30СтудИзба

Описание файла

Документ из архива "Вариации при исчислении", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85525"

Текст из документа "85525"

1. Элементы вариационного исчисления


1.1 Понятие функционала и оператора

В курсе высшей математики вводилось понятие функции. Если некоторому числу x из области D ставится в соответствие по определенному правилу или закону число y, то говорят, что задана функция y = f(x). Область D называют областью определения функции f(x).

Если же функции y(x) ставится в соответствие по определенному правилу или закону число J, то говорят, что задан функционал J = J(y). Примером функционала может быть определенный интеграл от функции y(x) или от некоторого выражения, зависящего от y(x),

Если теперь функции y(x) ставится в соответствие по определенному правилу или закону вновь функция z(x), то говорят, что задан оператор z = L(y), или z = Ly.

Примерами дифференциальных операторов могут служить:

Дадим более строгое определение функционала. Пусть A – множество элементов произвольной природы, и пусть каждому элементу u є A приведено в соответствие одно и только одно число J(u). В этом случае говорят, что на множестве A задан функционал J. Множество A называется областью определения функционала J и обозначается через D(J); число J(u) называется значением функционала J на элементе u. Функционал J называется вещественным, если все его значения вещественны. Функционал J называется линейным, если его область определения есть линейное множество и если

J (αu + βv) = αJ(u) + βJ(v).

1.2 Задачи, приводящие к экстремуму функционала

Рис. 1.1


Задача о брахистохроне

Зарождение вариационного исчисления относят обычно к 1696 г., когда И. Бернулли поставил так называемую задачу о брахистохроне: точки А (0,0) и В (а, b) расположены в вертикальной плоскости (xy) (рис. 1). Какова должна быть кривая, лежащая в плоскости (xy) и соединяющая точки А и В, чтобы материальная точка, двигаясь без трения, скатывалась по этой кривой из точки А в точку В в кратчайшее время?

Искомая кривая и была названа брахистохроной.

Пусть уравнение кривой АВ есть y = u(x). Рассмотрим некоторый момент времени t, и пусть в этот момент движущаяся точка находится на расстоянии y от оси x. Тогда , где v – скорость движущейся точки, g – ускорение силы тяжести. В то же время

Отсюда

.

Обозначим через Т время, в течение которого материальная точка достигает точки В. Интегрируя, находим

(1.1)

Задача сводится к следующему: надо найти функцию y = u(x), удовлетворяющую условию

u(0) = 0; u(а) = b (1.2)

и сообщающую интегралу (1.1) наименьшее значение. Условия (1.2) означают, что искомая кривая должна проходить через заданные точки А и В. Такого типа условия принято называть граничными, или краевыми, так как они относятся к концам промежутка, на котором должна быть определена искомая функция.

Примером применения кривой в виде брахистохроны служит образующая цилиндрических поверхностей, используемых на детских площадках, в аттракционах для спуска с возвышения, на трамплинах.

Задача о наибольшей площади

Сформулируем эту задачу так: среди всех плоских кривых, имеющих данную длину и оканчивающихся в точках А (а, 0) и В (b, 0), найти кривую, ограничивающую вместе с отрезком [а, b] оси x область с наибольшей площадью.

Пусть уравнение кривой будет y = u(x). Задача заключается в том, чтобы найти функцию u(x), удовлетворяющую краевым условиям

u(а) = u(b) = 0 (1.3)

и тождеству

(1.4)

и сообщающую интегралу

(1.5)

наибольшее значение.

Общим для рассмотренных задач является то, что каждый раз ищется функция, удовлетворяющая тем или иным поставленным условиям и сообщающая экстремальное значение заданному функционалу.

Приведенные здесь задачи относятся к ветви математического анализа, называемой вариационным исчислением.


1.3 Постановка задачи вариационного исчисления

Задача вариационного исчисления состоит в следующем: дан функционал J с областью определения D(J); требуется найти элемент u0 є D(J), сообщающий функционалу либо минимальное значение

, (1.6)

либо максимальное значение

. (1.7)

Задача о максимуме функционала J тождественна с задачей о минимуме функционала – J, поэтому в дальнейшем будем рассматривать только задачу о минимуме функционала J.

В приведенной общей формулировке задачу вариационного исчисления решить вряд ли возможно, поэтому наложим на функционал J некоторые ограничения.

Будем считать, что D(J) есть часть некоторого пространства Х. Чтобы сформулировать дальнейшие ограничения, введем понятие линейного многообразия. Пусть М – линейное множество элементов пространства Х и ū – некоторый фиксированный элемент этого пространства. Линейным многообразием в пространстве Х назовем совокупность элементов, каждый из которых можно представить в виде

u = ū + η, ηєМ. (1.8)

Если ūєМ, то, очевидно, так определенное линейное многообразие совпадает с М.

Требование 1. Область определения D(J) функционала J есть линейное многообразие.

Будем считать также, что пространство Х бесконечномерно. Тогда в Х линейное множество М также бесконечномерно и, следовательно, из него можно выделить конечномерное подпространство.

Требование 2. Если η пробегает любое конечномерное подпространство, содержащееся в М, то на этом подпространстве функционал J(u) = J (ū + η) непрерывно дифференцируем достаточное число раз.

Введем понятие об абсолютном и относительном минимуме функционала. Функционал J достигает на элементе u0 є D(J) абсолютного минимума, если неравенство

J(u0) = J(u) (1.9)

Справедливо для любого элемента u є D(J). Тот же функционал достигает на элементе u0 относительного минимума, если неравенство (9) справедливо для элементов u є D(J), достаточно близких к u0.

Абсолютный минимум называют еще сильным минимумом, а относительный – слабым.

Существует аналогия между нахождением минимума функции и минимума функционала. При нахождении минимума функции первая производная функции приравнивается к нулю и находится точка, подозрительная на экстремум. Затем с помощью второй производной проверяется достаточное условие экстремума. При нахождении минимума функционала находится первая вариация функционала и приравнивается к нулю. В результате получаем необходимое условие экстремума функционала. Для проверки достаточного условия экстремума функционала находится вторая вариация функционала.

1.4 Первая вариация и градиент функционала

Будем рассматривать функционал J, подчиненный требованиям 1, 2. Возьмем произвольный элемент u є D(J) и произвольный элемент η є М. Обозначим через α произвольное вещественное число. Нетрудно видеть, что элемент

u + αη є D(J). (1.10)

Составим выражение J (u + αη). В силу требования 2 J (u + αη) есть непрерывно дифференцируемая функция от α. Вычислим ее производную и возьмем значение этой производной при α = 0

. (1.11)

В результате получим число, которое можно рассматривать как значение функционала (11), зависящего от двух элементов u и η.

Определение. Функционал

называется первой вариацией функционала J на элементе u и обозначается символом δJ (u, η):

. (1.12)

При этом разность двух функций u є D(J) и u1 є D(J) называют вариацией функции u и обозначают δu = u(х) – u1 (х).

Пример. Найти первую вариацию функционала

(1.13)

область определения которого D(J) состоит из функций, удовлетворяющих следующим условиям: u С(1) [a, b] и

u(а) = А, u(b) = В, (1.14)

где А и В-заданные постоянные. Условия (14) означают, что кривые у = u(х), где u D(J), проходят через две фиксированные точки (а, А) и (b, В).

Несложно показать, что функционал (13) удовлетворяет оговоренным выше двум требованиям, кроме того, он удовлетворяет требованию 3.

Требование 3. Вариация δJ (u, η) – не только однородный, но и аддитивный функционал от η.

Составим вариацию функционала (1.13)

(1.15)

Можно показать, что интеграл:

(1.16)

есть ограниченный функционал от η, при этом считаем, что η(х) непрерывно дифференцируема и удовлетворяет условиям:

η(а) = η(b) = 0. (1.17)

В этом случае интеграл (1.16) можно взять по частям

Таким образом, интеграл (1.15) можно записать в виде

. (1.18)

Здесь u + αη – u = αη = δu u можно записать

(1.19)

Вариацию δJ (u, η) можно записать в виде

δJ (u, η) = (Рu, η). (1.20)

Определение. Оператор Р, определенный формулой (1.20), называется градиентом функционала J(u) и обозначается символом

Р = grad J.

Если u D(Р), то вариацию функционала J(u) можно записать в виде

δJ (u, η) = (grad J(u), η) (1.21)

Здесь взяли α = 1, чтобы не загромождать запись. В выражении (1.18)

.

1.5 Необходимое условие минимума функционала

Пусть функционал J достигает на некотором элементе u0 относительного минимума. Возьмем произвольный элемент η М и произвольное вещественное число α. По определению относительного минимума при достаточно малых значениях α

J(u0 + αη) J(u0) (1.22)

Это неравенство означает, что функция одной вещественной переменной α, равная J(u0 + αη), имеет при α0 = 0 относительный минимум. Но тогда необходимо

или, что то же

δJ(u0, η) = 0 (1.23)

Если функционал в некоторой точке достигает минимума, то в этой точке первая вариация функционала равна нулю. В этом заключается необходимое условие экстремума функционала.

1.6 Уравнение Эйлера. Связь между вариационной и краевой задачами

Рассмотрим основную лемму вариационного исчисления.

Лемма Лагранжа.

Пусть f (х, у) – функция, непрерывная в области D с контуром Г. Если

η (х, у) dxdy = 0 (1.24)

для любой функции η (х, у), непрерывной в области D вместе со своими частнымы производными до n-го порядка включительно и обращающейся в нуль на границе Г (η (х, у)|Г = 0), то

f (х, у) = 0.

Для примера, рассмотренного в 1.4, было получено в точке минимума функционала (1.13) условие

(1.25)

Исходя из леммы Лагранжа, можем записать

. (1.26)

Если условие (1.25) записать в виде

,

то очевидно, что δu (вариация искомой функции) – функция неравная нулю на отрезке (а, b), поэтому должно выполняться условие (1.26).

Уравнение (1.26) можно еще записать в виде

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее