85012 (Оператор сдвига)

2016-07-30СтудИзба

Описание файла

Документ из архива "Оператор сдвига", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85012"

Текст из документа "85012"

Оператор сдвига

Введение

Тема для написания дипломной работы была выбрана не случайно. Теория линейных операторов – это интересная и важная область, которая позволяет не только активно применять уже имеющиеся знания по анализу, но и узнать много нового.

В данной работе рассматриваются линейные операторы одностороннего и двустороннего сдвига. Вводятся основные понятия: спектр, резольвента, спектральный радиус оператора. Рассматриваются задачи, в ходе решения которых выясняются некоторые свойства спектров операторов сдвига. Определяется класс взвешенных сдвигов, выводится соотношение для нормы и спектрального радиуса оператора взвешенного сдвига.

Известно, что если рассматривать поле действительных чисел при условии, что аксиома Архимеда не выполняется, то получим новое, расширенное поле, в котором существуют бесконечно большие и бесконечно малые элементы. На основании этого расширения можно построить весь математический анализ – нестандартный анализ.

Естественно, часть основных понятий и свойств линейных операторов было бы интересно определить и доказать и в нестандартном анализе, что и было сделано в работе.

В частности, был установлен следующий факт: хотя стандартный оператор сдвига не имеет собственных векторов, но его нестандартное расширение имеет «почти собственные» векторы, т. е. векторы, в определенном смысле бесконечно близкие к собственным.

Часть 1. Оператор сдвига в гильбертовом пространстве

§1. Основные понятия и факты теории линейных операторов

1. Определение и примеры линейных операторов

Пусть Е и Е1 – два линейных нормированных пространства над полем комплексных чисел. Линейным оператором, действующим из Е в Е1 называется отображение (

удовлетворяющее условию

для всех

.

Совокупность DA всех тех , для которых отображение А определено, называется областью определения оператора А; вообще говоря, не предполагается, что DA=E , однако мы всегда будем считать, что DA есть линейное многообразие, то есть, если х,у

DA , то и

при любых

.

Определение 1. Оператор называется непрерывным в точке х0

DA , если для любой окрестности V точки у0=Ах0 существует такая окрестность U точки х0 , что Ах

V , как только х

. Оператор А называется непрерывным, если он непрерывен в каждой точке х

DA.

Поскольку Е и Е1 – нормированные пространства, то это определение равносильно следующему: оператор А называется непрерывным, если выполняется следующее условие: (

.

Примеры линейных операторов

Пусть А – линейный оператор, отображающий n-мерное пространство Rn c базисом е1, …, еn в m-мерное пространство Rm с базисом f1, …,fm . Если х – произвольный вектор из Rn , то и, в силу линейности оператора А

.

Таким образом, оператор А задан, если известно, в какие элементы он переводит базисные векторы е1,…, еn . Рассмотрим разложение вектора Аеi по базису f1, …, fm . Имеем . Следовательно, оператор А определяется матрицей коэффициентов аij . Образ пространства Rn и Rm представляет собой линейное пространство, размерность которого равна, очевидно, рангу матрицы

, т.е. во всяком случае не превосходит n (свойство ранга матрицы). Отметим, что в конечномерном пространстве всякий линейный оператор автоматически непрерывен.

Рассмотрим гильбертово пространство Н и в нем некоторое подпространство Н1 . Разложив Н в прямую сумму подпространства Н1 и его ортогонального дополнения, т.е. представив каждый элемент в виде

(

положим Рh=h1. Этот оператор Р естественно назвать оператором проектирования, проектирующим все пространство Н на Н1. Очевидно, что Р является линейным и непрерывным оператором.

Рассмотрим в пространстве непрерывных функций на отрезке [a;b] с нормой

оператор, определяемый формулой

, (1)

где k(s,t) – некоторая фиксированная непрерывная функция двух переменных. Функция непрерывна для любой непрерывной функции

, так что оператор (1) действительно переводит пространство непрерывных функций в себя. Его линейность очевидна. Можно доказать также, что он непрерывен.

Тот же оператор можно рассмотреть на множестве непрерывных функций С2[a,b] с нормой , где он также непрерывен.

4. Один из важнейших для анализа примеров линейных операторов – оператор дифференцирования. Его можно рассматривать в пространстве C[a,b] : Df(t) = .

Этот оператор D определен не на всем пространстве непрерывных функций, а лишь на линейном многообразии функций, имеющих непрерывную производную. Оператор D линеен, но не непрерывен. Это видно, например, из того, что последовательность

сходится к 0 ( в метрике С[a,b]), а последовательность

не сходится.

Оператор дифференцирования можно рассматривать как оператор, действующий из пространства D1 непрерывно дифференцируемых функций на [a,b] с нормой в пространство С[a,b]. В этом случае оператор D линеен и непрерывен и отображает все D1 на все С[a,b].

Рассмотрение оператора дифференцирования как оператора, действующего из D1 в С[a,b], не вполне удобно, так как, хотя при этом мы и получаем непрерывный оператор, определенный на всем пространстве, но не к любой функции из D1 можно применять этот оператор дважды. Удобнее рассматривать оператор дифференцирования в еще более узком пространстве, чем D1 , а именно в пространстве бесконечно дифференцируемых функций на отрезке [a; b], в котором топология задается счетной системой норм

. Оператор дифференцирования переводит все это пространство в себя, и, как можно проверить, он непрерывен на этом пространстве.

2. Ограниченность и норма линейного оператора

Определение 2. Линейный оператор, действующий из Е в Е1, называется ограниченным, если он определен на всем Е и каждое ограниченное множество переводит снова в ограниченное. Между непрерывностью и ограниченностью линейного оператора существует тесная связь, т.е. справедливы следующие утверждения:

Теорема 1. Для того, чтобы линейный оператор был непрерывным, необходимо и достаточно, чтобы он был ограничен.

1. Пусть оператор А неограничен. Тогда существует М Е – ограниченное множество, такое, что множество АМ

Е1 не ограничено. Следовательно, в Е1 найдется такая окрестность нуля V, что ни одно из множеств

АМ не содержится в V. Но тогда существует такая последовательность хn

M , что ни один из элементов

Ахn не принадлежит V и получаем, что

в Е, но

не сходится к 0 в Е; это противоречит непрерывности оператора А.

2. Если оператор А не непрерывен в точке 0, то в Е1 существует такая последовательность , что Ахn не стремится к 0. При этом последовательность

ограничена, а последовательность

не ограничена. Итак, если оператор А не непрерывен, то А и не ограничен. Утверждение доказано.

Если Е и Е1 – нормированные пространства, то условие ограниченности оператора А, действующего из Е в Е1, можно сформулировать так: оператор А называется ограниченным, если он переводит любой шар в ограниченное множество.

В силу линейности оператора А это условие можно сформулировать так: оператор А ограничен, если существует С=const , что для любого

Е :

.

Определение 3. Наименьшее из чисел С, удовлетворяющих этому неравенству, называется нормой оператора А и обозначается .

Теорема 2 [1]. Для любого ограниченного оператора А , действующего из нормированного пространства в нормированное .

3. Сумма и произведение линейных операторов. Пространство линейных непрерывных операторов

Определение 4. Пусть А и В – два линейных оператора, действующих из линейного топологического пространства Е в пространство Е1. Назовем их суммой А+В оператор С, ставящий в соответствие элементу элемент у=Ах+Вх,

.

Можно проверить, что С=А+В – линейный оператор, непрерывный, если А и В непрерывны. Область определения DC оператора С есть пересечение областей определения операторов А и В.

Если Е и Е1 – нормированные пространства, а операторы А и В ограничены, то С тоже ограничен, причем

(2)

Действительно, для любых х , следовательно, выполняется неравенство (2).

Определение 5. Пусть А и В – линейные операторы, причем А действует из Е в Е1, а В действует из Е1 в Е2 . Произведением ВА операторов А и В называется оператор С, ставящий в соответствие элементу элемент

из Е2.

Область определения DC оператора С=ВА состоит из тех х DA , для которых Ах

DB. Ясно , что оператор С линеен. Он непрерывен, если А и В непрерывны.

Если А и В – ограниченные операторы, действующие в нормированных пространствах, то и оператор С=ВА – ограничен, причем

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее