85012 (612458), страница 3

Файл №612458 85012 (Оператор сдвига) 3 страница85012 (612458) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

, и

, т. е.

для всех

.

Докажем, что, если точка является регулярной для оператора U, то точка

является регулярной для обратного оператора U-1. Точка

, является регулярной для оператора U, если выполняется условие:

(*).

Оператор U-1 является обратным для оператора U, значит, для них верно U-1U=I=UU-1 . Используя это, равенство (*) можно переписать:

, или

.

Используем свойство обратных операторов: оператор, обратный произведению операторов, равен произведению обратных операторов к данным, взятых в противоположном порядке, т.е. для двух операторов А и В имеем . Тогда равенство можно переписать в виде:

.

Вычислим отдельно произведение:

.

В итоге , т.е.

является регулярной для обратного оператора U-1.

Возьмем множество точек . Тогда точки вида

лежат вне единичного круга и все являются для оператора

регулярными, так как он унитарный и его норма равна 1. Но поскольку оператор

- обратный к оператору

, то точки, входящие в

, по предыдущему рассуждению являются для него регулярными. Следовательно, спектр оператора U – это множество, лежащее на единичной окружности.

Важным примером изометрического оператора является оператор сдвига.

Определение 10. Оператор , заданный в пространстве последовательностей, называется оператором сдвига, если он каждую последовательность вида (х1,х2,…, хn…) переводит в последовательность вида (0, х1, х2, …, хn…), т.е. выполняется равенство:

(х1,х2,…, хn…)=(0, х1, х2, …, хn…).

Можно также рассматривать оператор сдвига, который действует в пространстве последовательностей, бесконечных в обе стороны. Элемент этого пространства можно представить в таком виде: (…х-2, х-1, х0, х1, х2, …).

Определение 11. Оператор называется оператором двухстороннего сдвига, если он каждую последовательность, бесконечную в обе стороны, сдвигает вправо, т.е. выполняется равенство:

.

Уточним, о каких пространствах последовательностей будет идти речь:

1) l2 – пространство односторонних последовательностей комплексных чисел с натуральной нумерацией, для которых ряд - сходящийся. Скалярное произведение в этом пространстве определяется формулой

.

2) l2(-∞;∞) – пространство двусторонних последовательностей комплексных чисел с нумерацией целыми числами, для которых соответственно ряд – сходящийся. Скалярное произведение в этом пространстве определяется формулой

.

Рассмотрим оператор одностороннего сдвига U(x1, x2, …, xn, …)=(0, x1, x2, …). Покажем, что этот оператор является изометрическим. Действительно, для любых

. А, значит, этот оператор по лемме 1 является изометрическим. Указанный оператор U не является унитарным, так как его образ – это не все пространство l2; векторы, имеющие ненулевую первую координату (например векторы вида (1, х1, х2, …)) не имеют прообраза. Значит, обратного оператора он не имеет.

Теорема 8. Оператор двухстороннего сдвига является унитарным оператором

Доказательство. Рассмотрим оператор двустороннего сдвига

U(…, x-1, x00, x1, …)=(…, x-2, x-10, x0, x1, …).

Очевидно, что этот оператор сохраняет норму, т.е. является изометрическим: . Покажем, что он имеет обратный оператор – это оператор, который любую последовательность сдвигает влево.

В пространстве последовательностей, как и в любом метрическом пространстве, любой вектор представляется как линейная комбинация элементов базиса. В этом пространстве имеется канонический базис – это последовательности вида

………………………

l-1=(.., 0, 1-1, 0, …)

l0=(…, 0, 10, 0, …)

l1=(…, 0, 11, 0, …)

………………………

Подействуем оператором U на произвольный элемент базиса:

Ulk=U(…, 0, 1k, 0,…)=(…, 0, 1k+1, 0)=lk+1.

Т.е. каждый элемент базиса оператор U переводит в последующий элемент. Чтобы осуществлялось обратное действие, мы должны каждый элемент базиса перевести в предыдущий элемент, т.е. U-1lk=lk-1.

Каждый вектор пространства l2 х=(…, х-1, х0, х1, …) может быть представлен в виде: . А так как оператор U-1 элементы базиса переводит в предыдущие, то, действуя на последовательность

, сдвинет ее влево.

Итак, мы получили, что оператор двухстороннего сдвига U имеет обратный оператор и является изометрическим, следовательно, он является унитарным. Спектр этого оператора лежит на единичной окружности.

7.Взвешенные сдвиги

Определение 12. Оператором взвешенного сдвига называется произведение оператора сдвига (одностороннего или двустороннего) на диагональный (в этом же базисе) оператор.

Более подробно: пусть – ортонормированный базис (n = 0, 1, 2, … или n = 0,

1,

2, …) и пусть

– ограниченная последовательность комплексных чисел (n пробегает те же значения, что и выше). Оператором взвешенного сдвига называется оператор вида SP, где S– оператор сдвига (Sln= ln+1) ,а Р – диагональный оператор с диагональю

(Pln =

ln ).

Найдем выражение для нормы и спектрального радиуса оператора взвешенного сдвига через его веса.

Вспомним, что сдвиг S1 – изометрический оператор, значит, не изменяет нормы элемента: для любого

.Поэтому норма оператора А равна норме соответствующего диагонального оператора: для любого

и

. Найдем норму диагонального оператора Pln =

, где

– некоторая ограниченная последовательность комплексных чисел. Рассмотрим произвольную последовательность

с единичной нормой:

. При этом в базисе

элемент

имеет разложение

. Подействуем на элемент х оператором Р:

. При этом

. Отсюда следует, что

. Покажем, что выполняется также и обратное неравенство. Если для последовательности

достигается, т.е.

при некотором

, то возьмем элемент

:

,

. Если же

не достигается, то можно взять подпоследовательность

, тогда

. Это говорит о том, что не может быть

. Итак,

и

. Мы получили, что норма оператора взвешенного сдвига равна точной верхней грани модулей его весов.

Чтобы найти спектральный радиус оператора взвешенного сдвига, найдем нормы его степеней. Вычислим степени оператора А: Aln = , A2ln =

,A3ln =

, и так далее. Следовательно, Ак можно представить в виде произведения изометрии (к-й степени оператора сдвига) и диагонального оператора, у которого n-й диагональный член равен произведению к последовательных чисел

, начиная с

. Значит,

, отсюда,

.

8. Операторы сдвига в пространстве функции на единичной окружности

Рассмотрим единичную окружность на комплексной плоскости, т. е. всевозможные комплексные числа , по модулю равные 1. Рассмотрим комплексную последовательность

и составим ряд

. Если он сходится для всех

, таких, что

, то

– функция от переменной

, определенная на единичной окружности. Заметим, что для последовательностей из пространства

, таких, что ряд

сходящийся, ряд

сходится для всех

, таких, что

. Итак, существует взаимно однозначное соответствие

между пространством

и множеством A функций на единичной окружности, представимых в виде суммы обобщенного степенного ряда с абсолютно сходящимся рядом коэффициентов. Рассмотрим, в какой оператор переходит при этом оператор сдвига U. Обозначим этот оператор

. Пусть

и

– соответствующая функция. Тогда

. Итак, в пространстве А оператору сдвига соответствует оператор умножения на функцию

.

Рассмотрим теперь оператор взвешенного сдвига с весами

. Его область определения – не все пространство

, а только те последовательности

, для которых сходится ряд

. При этом

. Таким образом, в пространстве А оператору сдвига

соответствует оператор дифференцирования.

Часть 2. Нестандартное расширение оператора сдвига

1. Нестандартное расширение поля действительных чисел

Поле R действительных чисел является расширением поля рациональных чисел с помощью определенной конструкции. Например, можно рассматривать действительные числа как классы фундаментальных последовательностей рациональных чисел.

Существует некоторая конструкция и для расширения поля R. При этом получается новое поле с линейным порядком, но без выполнения аксиомы Архимеда: . В новом поле существуют положительные элементы, меньшие любой дроби

, где

. Такие элементы называются бесконечно малыми. Также существуют положительные элементы, большие любого

, они называются бесконечно большими. Это поле называется нестандартным расширением поля действительных чисел и обозначается *R.

Та же конструкция (которую мы не будем здесь описывать), дает расширение любого множества, построенного на основании поля действительных чисел, например, булеана , или прямого произведения

Характеристики

Тип файла
Документ
Размер
1,14 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6549
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее