49567 (Дослідження методів чисельного інтегрування)

2016-07-30СтудИзба

Описание файла

Документ из архива "Дослідження методів чисельного інтегрування", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49567"

Текст из документа "49567"

Міністерство освіти і науки України

Вінницький національний технічний університет

Інститут автоматики, електроніки та комп’ютерних

систем управління

Факультет АКСУ
Кафедра АІВТ

Курсова робота

з дисципліни

«Обчислювальні методи та застосування ЕОМ»

Дослідження методів чисельного інтегрування

2006

Анотація

В даній курсовій роботі розроблена програма для обчислення визначеного інтегралу методом Чебишева третього четвертого та п’ятого порядків.

Програма дозволяє отримати розв’язання інтегралу зазначеним методом, оцінити похибки та порівнювати їх з точним обчисленнями отриманими в математичному пакеті Mathcad 2001 Professional.

1. Теоретичні відомості

У курсовій роботі проведено дослідження методів чисельного інтегрування. Адже, у задачах, пов'язаних з аналізом, ідентифікацією, оцінкою якості, моделюванням різноманітних пристроїв автоматики, керування, інформаційно-вимірювальної техніки, радіоелектроніки, виникає необхідність обчислення визначених інтегралів.

В основу чисельного інтегрування покладено наближене обчислення площини під кривою, яка описується підінтегральною функцією інтеграла:

Загальний підхід до розв’язування цієї задачі такий: визначений інтеграл I являє собою площину, обмежену кривою f(х), віссю Х та прямими Х = a, Х =b, відрізок від a до b розбивають на множину менших відрізків, знаходять наближено площу кожної площини Si, яку отримують за таким розбиванням, значення інтеграла І знаходять як суму площ площин Sі, тобто I = Si. При цьому використовують два способи розбивання початкового відрізка на менші

1.Розбивання відрізка проводиться раніше, до того ж завжди відрізок вибирають рівним (метод прямокутників, трапецій, Сімпсона).

2.Місцезнаходження та довжина відрізків визначаються аналізом, до того ж спочатку ставиться за мету досягти найбільшої точності з заданим числом відрізків, а потім відповідно з цим визначають їхні межі (методи Гаусса, Ньютона - Котеса, Чебишева) [1].

1.1 Метод прямокутників

Найпростішим методом наближеного обчислення інтеграла є метод прямокутників, геометрична інтерпретація якого зводиться до знаходження визначеного інтеграла як суми площ N прямокутників (з висотою f(x) та основою h= xi=xi+1-xi), отриманих розділень відрізка[a,b] на N рівних частин, до того ж якщо розділити на прямокутники зліва на право, то отримаємо формулу лівих прямокутників:

In= f(x)dx Si=h[f(x0)+f(x1)+...+f(xn-1)]= f(xi);(1.1)

якщо ж розділити на N прямокутників справа на ліво, то отримаємо формулу правих прямокутників:

Iпр= f(x)dxh[f(xn)+...+f(x1)]= f(xi)(1.2)

1.2 Метод трапецій

Суть методу трапеції, полягає в тому, що інтеграл обчислюється по-іншому, відрізок інтегрування поділяється на N рівних відрізків, всередині яких підінтегральна крива f(x) замінюється кусково- лінійною функцією (x), отриманою стягуванням ординат N відрізків хордами.

Обчислення визначеного інтеграла зводиться до знаходження сум площ Si прямокутних трапецій N.

Площа кожної такої трапеції визначається як:

Si=h (f(xi)+f(xi+1)).(1.3)

Отже, формула трапеції:

I= Si=h( f(x0)+f(x1)+f(x2)+...+f(xn-1)+ f(xN)= = [ (f(x0)+f(xn))+ f(xi) ]. (1.4)

Графічна модель


Похибка обчислення інтеграла за формулою трапецій оцінюється як

(1.5)

Де М2 –максимальне значення другої похідної. f(x) при ,h-крок обчислень.

1.3 Метод Сімпсона (метод парабол або метод криволінійних трапецій)

Цей метод також використано у курсовій роботі, близький до методу трапецій у тій частині, що інтегрування проводиться шляхом поділу відрізка інтегрування [а, b] на множину відрізків (N пар відрізків). Однак, з метою збільшення точності наближеного інтегрування на кожному відрізку [Xi, Xi+2] підінтегральної функції f(x) замінюють квадратичною параболою (x), обчислення визначеного інтеграла зводиться до обчислення суми N криволінійних трапецій Si: I= f(x)dx Si [1].

Г рафічна модель.

Площа кожної такої трапеції визначається за формулою Сімпсона:

Si= [f(xi)+4f( xi+1)+f(xi+2)], (1.6), тобто

(y0+4y1+y2),

(y2+4y3+y4),

(y4+4y5+y6), (1.7)

. . . . . . . . . . . . . . . . . . . . . . .

(y2n-2+4y2n-1+y2n),

Тоді чисельне значення визначеного інтеграла на відрізку [a,b] дорівнюватиме сумі інтегралів, тобто

[y0+y2n+4(y1+...+y2n-1)+2(y2+...+y2n-2)],

або

[y0+y2n+4 y2i-1+2 y2i],(1.8)

де h =(b-a)/2N.

Похибка обчислення інтеграла за формулою Сімпсона оцінюється як

де М4 –максимальне значення четвертої похідної. f(x) при , h-крок обчислень.

1.4 Метод Ньютона-Котеса

Цей метод засновано на апроксимації однієї із сторін криволінійної трапеції, яка отримується поділом відрізка [a,b] на N рівних частин, многочленами вищих порядків, також як у методі трапецій використовується лінійна апроксимація (заміна однієї із сторін трапеції прямою лінією), а в методі Сімпсона - апроксимація параболою.

Основна формула методу:

yiHi,(1.9)

де Hi - коефіцієнти Ньютона - Котеса. Ці коефіцієнти не залежать від вигляду f(x), а є функцією тільки N (кількість вузлів інтерполяцїї). Таким чином, коефіцієнти Ньютона - Котеса можна обчислити раніше для різного числа вузлів інтерполяції .

Легко можна показати, що методи трапецій та Сімпсона є частинними випадками методу Ньютона - Котеса.

1.5 Метод Чебишева

Метод Чебишева використано в курсовій грунтується на обчисленні інтеграла за значеннями функції yi =f(xi),(i=1,2,...,N) у зафіксованих вузлах інтерполяції x1,x2,...,xN (де h=const). Коефіцієнти Ньютона -Котеса Нi (i=1,N) не залежать від значень функції у вузлах інтерполяції. П.Л.Чебишев запропонував для обчислення визначених інтегралів використати формулу:

cif(xi),(1.10)

в якій квадратурні коефіцієнти сi (i = 1,2, ...,N) зафіксовані, а абсциси xi (i=1,2,...,N)підлягаютьвизначенню.

Таблиця 1.1.

Коефіцієнти Ньютона - Котеса

n = 1

Но = H1 = ½

n = 2

Но = Н2 = 1/6, Н1 = 2/3

n = 3

Н0 = Н3 = 1/8, Н1 = H2 = 3/8

n = 4

Но = Н4 = 7/90, Н1 = Нз = 16/45, Н2 = 2/15

n = 5

Н0 = Н5 =19/288, Н1 = Н4 = 25/96, Н2 = Нз =

= 25/144

n = 6

Но = Н6 = 41/840, Н1 = Н5 = 9/35, Н2 = Н4 = =9/280, Нз = 34/105

n = 7

Но = Н7 = 75І/17280, Н1 = Н6 = 3577/1728О, Н2 = Н5 =1323/1728О, Нз = Н4 = 2989/17280

Для простоти обчислень необхідно вибрати С1=...=Сn. Розглядаємо спочатку частинний випадок, коли межі інтегрування дорівнюють -1 та 1. Тоді формула Чебишева набере вигляду:

2Cn[f(x1)+f(x2)+...+f(xn)],(1.11)

де квадратурні коефіцієнти Сn та абсциси xi підлягають визначенню.

Коефіцієнти та вузли інтерполяції xi визначимо із умови, що ця рівність є точною для випадку, коли f(х) многочлен вигляду:

f(x)=a0+a1x+a2x2+...+anxn.(1.12)

Підставимо многочлен у ліву частину попередньої формули та про- інтегруємо:

(a0+a1x+a2x2+...+anxn)=2(a0+ a2+ a3+...).(1.13)

У праву частину рівності (1. 11) підставимо значення многочлена (1.І2) у вузлах x1,x2,...,xn:

f(x1)=a0+a1x1+a2x12+a3x13+...+anx1n,

f(x2)=a0+a1x2+a2x22+a3x23+...+anx2n,

f(x3)=a0+a1x3+a2x32+a3x33+...+anx3n,(1.14)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f(xn)=a0+a1xn+a2xn2+a3xn3+...+anxnn,

Тоді рівність (1.ІЗ) набере вигляду:

2(a0+ a2+ a4+...)=2cn[na0+a1(x1+x2+...+xn)+a2(x12+x22+...+xn2)+

+a3(x13+x23+...+xn3)+...+an(x1n+x2n+...+xnn)].(1.15)

Отримана рівність повинна виконуватися за будь-яких значень a0,a1,...,an; таким чином, порівнюючи коефіцієнти аi в правій та лівій частинах (1.І5) знаходимо, що nсn = 1, звідки

Cn= .(1.16)

і, крім цього,

x1+x2+x3+...+xn=0,

x12+x22+x32+...+xn2= ,

x13+x23+x33+...+xn3=0,(1.17)

x14+x24+x34+...+xn4= ,

. . . . . . . . . . . . . . . . . . .

x1n+x2n+x3n+...+xnn= [1-(-1)n+1],

Підставляючи знайдене для Сn виразу в співвідношені 1.13 отримаємо формулу Чебишева:

[f(x1)+f(x2)+...+f(xn)],(1.18)

де точки x1,...,хn визначаються із системи рівнянь (1.17).

Значення x1,...,хn для різних n обчислюються раніше та зводять в табл. 1.2.

Коли межі даного інтеграла відрізняються від -1 та 1, формула Чебишева матиме вигляд:

[f(z1)+f(z2)+...+f(zn)],(1.19)

де

Таблиця 1.2.

Число

ординат

Значення абсцис

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

-x1 = x2 = 0.577350

-x1 = x3 = 0.707107; x2 = 0

-x1 = x4 = 0.794654; -x2 = x3 = 0.187592

-x1 = x5 = 0.832498; -x2 = x4 = 0.374541; х3 = 0

-x1 = x6 = 0.866247; -x2 = x5 = 0.4225І9; -x3 = x4 = 0.266635

-x1 = x7 = 0.883862; -x2 = x6 = 0.529657; -x3= = x5 = 0.323912; x4 = 0

Zi= + xi, (i=1,2,...,n),(1.20)

а xi мають вкaзані в таблиці значення.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее