48798 (Решение задач нелинейного программирования)

2016-07-30СтудИзба

Описание файла

Документ из архива "Решение задач нелинейного программирования", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48798"

Текст из документа "48798"

Министерство науки и образования Республики Казахстан

Талдыкорганский политехнический колледж

Курсовая работа

По предмету:

«Моделирование производственных и экономических процессов»

На тему:

«Решение задач нелинейного программирования»

г. Талдыкорган 2007 г.

Введение

Математическое программирование занимается изучение экстремальных задач и поиском методов их решения. Задачи математического программирования формулируются следующим образом: найти экстремум некоторой функции многих переменных f (x1, x2,…, xn) при ограничениях gi (x1, x2,…, xn) bi, где gi – функция, описывающая ограничения, а bi – действительное число, i = 1,…, m. Функция f называется функцией цели (целевой функцией).

В общем, виде задача нелинейного программирования состоит в определении максимального (минимального) значения функции f(x1, x2, …, xn) при условии, что ее переменные удовлетворяют соотношениям:

где f и g – некоторые известные функции n переменных, а bi – заданные числа.

В результате решения задачи будет определена точка Х*= (x1*, x2*, …, xn*), координаты которой удовлетворяют соотношениям и такая, что для всякой другой точки Х= (x1, x2, …, xn), удовлетворяющей условиям, выполняется неравенство f (x1*, x2*, …, xn*) ≥ f (x1, x2, …, xn) [f (x1*, x2*, …, xn*) ≥ f (x1, x2, …, xn)].

Если f и gi – линейные функции, то задача является задачей линейного программирования.

Соотношения образуют систему ограничений и включают в себя условия не отрицательности переменных, если такие условия имеются. Условия неотрицательности переменных могут быть заданы и непосредственно.

В евклидовом пространстве Еn система ограничений определяет область решений задачи. В отличие от задачи линейного программирования она не всегда является выпуклой.

Если определена область допустимых решений, то нахождение решения задачи сводится к определению такой точки этой области, через которую проходит гиперповерхность наивысшего (наименьшего) уровня: f (x1, x2, …, xn) = h. Указанная точка может находиться как на границе области допустимых решений, так и внутри неё.

Процесс нахождения решения задачи нелинейного программирования с использованием ее геометрической интерпретации включает следующие этапы:

  1. Находят область допустимых решений задачи, определяемую соотношениями (если она пуста, то задача не имеет решения).

  2. Строят гиперповерхность f (x1, x2, …, xn) = h.

  3. Определяют гиперповерхность наивысшего (наинизшего) уровня или устанавливают неразрешимость задачи из-за неограниченности функций сверху (внизу) на множестве допустимых решений.

  4. Находят точку области допустимых решений, через которую проходит гиперповерхности наивысшего (наинизшего) уровня, и определяют в ней значение функции.

Или приводят задачу нелинейного программирования к задаче линейного программирования и решают нижеизложенными способами.

Задача является задачей линейного программирования, а следовательно, ее решение можно найти известными методами: 1) графический; 2) табличный (прямой, простой) симплекс – метод; 3) метод искусственного базиса; 4) модифицированный симплекс – метод; 5) двойственный симплекс – метод.

1. Табличный симплекс-метод

Для его применения необходимо, чтобы знаки в ограничениях были вида «меньше либо равно», а компоненты вектора b – положительны.

Алгоритм решения сводится к следующему:

1. Приведение системы ограничений к каноническому виду путём введения дополнительных переменных для приведения неравенств к равенствам.

2. Если в исходной системе ограничений присутствовали знаки» равно "или" больше либо равно», то в указанные ограничения добавляются искусственные переменные, которые так же вводятся и в целевую функцию со знаками, определяемыми типом оптимума.

3. Формируется симплекс – таблица.

4. Рассчитываются симплекс – разности.

5. Принимается решение об окончании либо продолжении счёта.

6. При необходимости выполняются итерации.

7. На каждой итерации определяется вектор, вводимый в базис, и вектор, выводимый из базиса. Таблица пересчитывается по методу Жордана – Гаусса или каким-нибудь другим способом.

2. Метод искусственного базиса

Данный метод решения применяется при наличии в ограничении знаков «равно» больше либо равно» меньше либо равно и является модификацией табличного метода. Решение системы производится путём ввода искусственных переменных со знаком, зависящим от типа оптимума, т.е. для исключения из базиса этих переменных последние вводятся в целевую функцию с большими отрицательными коэффициентами, а в задачи минимизации – с положительными. Таким образом, из исходной задачи получается новая задача.

Если в оптимальном решении – задачи нет искусственных переменных, это решение есть оптимальное решение исходной задачи. Если же в оптимальном решении – задачи хоть одна из искусственных переменных будет отлична от нуля, то система ограничений исходной задачи несовместна и исходная задача неразрешима.

3. Модифицированный симплекс-метод

В основу данной разновидности симплекс-метода положены такие особенности линейной алгебры, которые позволяют в ходе решения задачи работать с частью матрицы ограничений. Иногда метод называют методом обратной матрицы.

В процессе работы алгоритма происходит спонтанное обращение матрицы ограничений по частям, соответствующим текущим базисным векторам. Указанная способность делает весьма привлекательной машинную реализацию вычислений вследствие экономии памяти под промежуточные переменные и значительного сокращения времени счёта. Способность хороша для ситуаций, когда число переменных n значительно превышает число ограничений m.

В целом, метод отражает традиционные черты общего подхода к решению задач линейного программирования, включающего в себя канонизацию условий задачи, расчёт симплекс – разностей, проверку условий оптимальности, принятие решений о коррекции базиса и исключение Жордана – Гаусса. Особенности заключаются в наличии двух таблиц – основной и вспомогательной, порядке их заполнения и некоторой специфичности расчётных формул.

Зная оптимальный план этой задачи, на основе соотношений получаем оптимальный план исходной задачи.

Таким образом, процесс нахождения решения задачи нелинейного программирования включает следующие этапы:

  1. Первоначальную задачу сводят к задаче линейного программирования.

  2. Находят решение линейной задачи

Используя соотношения, определяют оптимальный план исходной задачи и находят максимальное значение целевой функции нелинейной задачи.

Первый этап: Получение задания к курсовой работе

1. Все числовые данные, касающиеся предполагаемых производственных и экономических процессов, берутся на основе шестизначного шифра:

9 5 5 8 7 2

Под каждую цифру записываются буквы a, b, c, d, e, f в следующем виде:

9 5 5 8 7 2

а b c d e f

из последней строки таблицы индивидуальных заданий находим столбцы соответствующие буквам a, b, c, d, e, f. Тогда числовыми данными, необходимыми для выполнения данной курсовой работы, будут данные находящиеся в а – том столбце в строке 9, b – том столбце в строке 5, c – том столбце в строке 5, d – том столбце в строке 8, e – том столбце в строке 7и f – том столбце в строке 2.

По таблице исходных заданий для любого варианта заданий по столбцу а исполнитель получает вариант выполняемого задания. В моем случае для цифры 9 соответствует вариант 9.

На некотором заводе производится три вида продукта и при этом расходуется два вида ресурсов. Производственная функция каждого вида продукта на предприятии опишется равенствами:

где Сi и - постоянные величины, i = 1, 2, 3;

X1 – трудовые ресурсы в человеко-днях;

Х2 – денежно-материальные средства, в тенге;

Уi – получаемый продукт

Х1 = а1х1 + b1x2 + c1x3

Х2 = а2х1 + b2x2 + c2x3

Найти все неотрицательные базисные решения и определить оптимальный план F = y1 + y2 + y3.

Известно, что продукт для производства j – того вида затрачивается aij единиц i – того ресурса. Эти затраты даются в таблицах 3.9.1. – 3.9.10

Последующие числовые данные берутся только из таблицы исходных данных выбранного варианта задания т.е. из таблицы №3.9.11.

2. По столбцу таблицы №3.9.11 для строки 8 исходной таблицей затрат единиц ресурса, будет таблица №3.9.4 т.е. следующая таблица:

Продукты ресурсы

1

2

3

I

8

4

6

II

160

240

200

3. По столбцу cна 3 строке находим с1=6, α1=0,6

4. По столбцу d – на 5 строке определяем с2=5, α2=0,5

5. По столбцу e – по 4 строке установим, что с3=8, α3=0,4.

6. И наконец по столбцу f – в 1 строке найдем Тчел.дней =1000, Птенге = 280000

Для производства имеются трудовые ресурсы Тчел.дней и денежно-материальные средства Птенге.

Требуется найти оптимальный план выпуска продукции, при котором выпускаемый продукт будет наибольшим.

Второй этап – составление математической модели задачи

1. На основании полученных в первом этапе исходных данных и описания заданного производственного процесса составляется следующая таблица:

Продукты ресурсы

1

2

3

I

8

4

6

1000

II

160

240

200

280000

Через Х1 обозначим ресурсы I вида.

Через Х2 обозначим ресурсы II вида.

2. Обращаясь к условиям задачи, определяем все возможные ограничения, объединяя их в систему ограничений.

1 + 4Х2 + 6Х3 ≤ 1000

240Х1+ 200Х2 + 160Х3 ≤ 280000

Таким образом, получили задачу нелинейного программирования. Такие задачи называются задачами нелинейного программирования.

Решение задач нелинейного программирования осуществляется приведением их к задачам линейного программирования.

Для решения задачи линейного программирования применяется симплекс – метод.

Третий этап – выбор метода решения полученной математической задачи

Решение

1. Для решения задач линейного программирования симплекс – методом задача приводиться к каноническому виду:

1 + 4Х2 + 6Х3 + Х4= 1000

240Х1+ 200Х2 + 160Х3 + Х5= 280000

2. Составляем таблицу и определяем все неотрицательные базисные решения системы.

Базисные переменные

Х1

Х2

Х3

Х4

Х5

Свободный член

Х4

8

4

6

1

0

1000

Х5

240

200

160

0

1

280000

А) Нашли некоторое неотрицательное базисное решение: Х4 =1300, Х5 = 190000. По заданию продолжаем искать базисные решения. Разрешающим элементом выбираем в 1 строке – Х2. Соответственно вся строка делится на 8, а все остальные элементы находятся по правилу прямоугольника.

Базисные переменные

Х1

Х2

Х3

Х4

Х5

Свободный член

Х4

8

4

6

1

0

1000

Х5

240

200

160

0

1

280000

Базисные переменные

Х1

Х2

Х3

Х4

Х5

Свободный член

Х2

¾

1

½

1/8

0

325/2

Х5

90

0

60

-25

1

157500

Б) Нашли некоторое неотрицательное базисное решение: Х2 =325/2, Х5 =157500. По заданию продолжаем искать базисные решения. Разрешающим элементом выбираем в 1 строке – Х1. Соответственно вся строка делится на 3/4, а все остальные элементы находятся по правилу прямоугольника.

Базисные переменные

Х1

Х2

Х3

Х4

Х5

Свободный член

Х2

¾

1

½

1/8

0

325/2

Х5

90

0

60

-25

1

157500

Базисные переменные

Х1

Х2

Х3

Х4

Х5

Свободный член

Х1

1

4/3

2/3

1/6

0

650/3

Х5

0

-120

0

-40

1

138000

В) Нашли некоторое неотрицательное базисное решение: Х1 =650/3, Х5 =138000. По заданию продолжаем искать базисные решения. Разрешающим элементом выбираем в 1 строке – Х3. Соответственно вся строка делится на 2/3, а все остальные элементы находятся по правилу прямоугольника.

Базисные переменные

Х1

Х2

Х3

Х4

Х5

Свободный член

Х1

1

4/3

2/3

1/6

0

650/3

Х5

0

-120

0

-40

1

138000

Базисные переменные

Х1

Х2

Х3

Х4

Х5

Свободный член

Х3

3/2

2

1

1/4

0

325

Х5

0

-120

0

-40

1

138000

Г) Нашли некоторое неотрицательное базисное решение: Х5 =138000, Х3 =325. Найдены все неотрицательные базисные решения.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее