151324 (Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151324"

Текст 2 страницы из документа "151324"

, ,  – коэффициенты диффузии в вертикальном и радиальном

, , , направлениях, м2/с;

h  – полувысота пористого пласта, м;

 – коэффициент проницаемости, м2;

– удельная теплота радиоактивного распада, Дж/кг;

m  – пористость;

 – радиус скважины закачки, м;

Rp  – положение фронта загрязнения, м;

Rw  – положение фронта закачиваемой жидкости, м;

RТ  – положение фронта термического влияния, м;

– температура носителя (загрязнителя) в различных пластах, К;

– удельная теплоёмкость и плотность пористого пласта, Дж/(кг·К), кг/м3;

 – скорость конвективного переноса примесей, м/с;

 – скорость фильтрации жидкости, м/с;

 – истинная скорость движения жидкости, м/с;

– постоянная радиоактивного распада, с-1;.

 – вязкость несущей жидкости, Па с;

 – химические потенциалы примесей в скелете и жидкости

 – плотности загрязнителя в скелете и жидкости, кг/м3;

– плотности пластов, кг/м3;

– время, с;

– коэффициенты теплопроводности в радиальном направлении, Вт/(м·К);

– коэффициенты теплопроводности в вертикальном направлении, Вт/(м·К);

– плотности загрязнителя в различных пластах, кг/м3.

Глава I. ПОСТАНОВКА ЗАДАЧИ ТЕПЛО- И МАССОПЕРЕНОСА ПРИ ФИЛЬТРАЦИИ ЖИДКОСТИ С РАДИОАКТИВНЫМ ЗАГРЯЗНИТЕЛЕМ В ГЛУБОКО ЗАЛЕГАЮЩИХ ПЛАСТАХ

    1. Некоторые аспекты развития методов расчётов температурных и концентрационных полей в пластах

Закачка растворов радиоактивных примесей в глубоко залегающие пористые пласты создает необходимость расчёта взаимосвязанных полей концентрации и температуры, что сводится к решению задач конвективной теплопроводности и конвективной диффузии. Это приводит к системе уравнений, включающей в себя уравнения непрерывности, Навье-Стокса, энергии и состояния вещества. Получающиеся дифференциальные уравнения в частных производных, на которые накладываются начальные и граничные условия, не могут быть решены без введения упрощений.

Одним из таких упрощений в задачах конвективной теплопроводности и диффузии является метод сосредоточенной ёмкости [50, 51, 52, 73], который заключается в выделении областей с мало изменяющейся вдоль одной или нескольких координат величиной, что позволяет заменять искомый параметр средним значением его в этих областях. Причем уравнения, описывающие физические процессы в указанных областях, заменяются соответствующим граничным условием в виде дифференциального уравнения в частных производных.

Температурные поля в нефтегазовых пластах в приближении сосредоточенной емкости рассмотрены в большом числе работ научных школ Башкирского, Казанского, Латвийского госуниверситетов.

Необходимо отметить работу Х.А. Ловерье [98], в которой рассмотрена термически анизотропная среда, обладающая следующими свойствами: пористый пласт, в который нагнетается вода, имеет бесконечно большую теплопроводность в вертикальном направлении и не проводит тепло посредством теплопроводности в горизонтальном направлении, породы, окружающие этот пласт, имеют конечную теплопроводность в вертикальном направлении и не проводят тепло в горизонтальном направлении. Как было показано Г.Е. Малофеевым [42] и Н.А. Авдониным [1], схема Ловерье даёт вполне удовлетворительные результаты, несмотря на упрощённые условия теплопереноса.

Большой вклад в изучение температурных полей в нефтяных пластах внёс Л.И. Рубинштейн [64]. Он разработал схемы, названные “точной схемой” и “схемой сосредоточенной ёмкости”. В “точной схеме” пласт и окружающие его породы считаются термически изотропными, имеющими теплофизические характеристики, совпадающие с характеристиками реального пласта, его кровли и подошвы. “Схема сосредоточенной ёмкости” близка к схеме Ловерье.

Считается, что пласт имеет бесконечно большую теплопроводность в вертикальном направлении, а теплопроводность пласта в направлении его простирания считается конечной, совпадающей с теплопроводностью реального пласта. Породы считаются термически изотропными с реальным значением коэффициента теплопроводности.

Теоретические изучения температурных полей при нагнетании в пласт воды проводились также М.А. Пудовкиным [63].

Вопросы захоронения радиоактивных отходов в геологических формациях и возникающие при этом экологические проблемы подробно рассматривались многими исследователями, среди которых можно выделить А.С. Белицкого, Е.И. Орлову [5], А.И. Рыбальченко, М.К. Пименова [65]. Исследованию гидродинамики и массопереноса загрязнителя посвящено большое число научных работ сотрудников ВНИИВодгео. Наиболее ценные результаты получены при проведении численных расчётов на ЭВМ по методу конечных разностей.

    1. Основные физические процессы при фильтрации жидкости в глубоко залегающих пластах

Построение механики смесей осуществлено на основе физических законов сохранения массы, импульса и энергии. Вместе с истинной скоростью движения жидкости в пористой среде вводится скорость фильтрации

.

(1.2.1)

Здесь m – коэффициент пористости (точнее эффективной пористости), который обуславливает фильтрацию в породе жидкости или газа и зависит от объёма пор , через которые осуществляется фильтрация по отношению ко всему объему образца .

Скорость фильтрации безынерционного движения жидких фаз определяется законом Дарси

.

(1.2.3)

В большинстве встречающихся (и, что важно, “рассчитываемых”) фильтрационных процессов деформация пористого скелета, сжимаемость и связанные с этим изменения температур жидкостей являются малыми. Основными эффектами, определяющими движение системы, являются неравновесное совместное движение нескольких жидких фаз, молекулярная и конвективная диффузия растворённых в фазах компонент, поглощение твёрдой фазой или сорбция компонент, массообмен между фазами и т.д.

Ограничимся рассмотрением задачи для одного загрязнителя, который является радиоактивным или химически активным. Стоит отметить, что концентрации загрязнителя в скелете пористой среды и в насыщающем её несжимаемом растворе быстро выравниваются в силу большой поверхности соприкосновения. Как было показано в работе О.И. Коркешко [30], время протекания массообмена между жидкостью и скелетом оказывается порядка 0.1 с. Растворы, рассматриваемые в работе, считаются идеальными, что соответствует случаю одинакового взаимодействия молекул между собой независимо от того, одинаковы они или различны.

При рассмотрении температурной задачи считается, что нагнетание теплоносителя не сопровождается никакими процессами изменения фазового состояния пластовых жидкостей; теплофизические характеристики жидкости, насыщавшей пласт до начала нагнетания, совпадают с характеристиками нагнетаемой жидкости; начальная температура пласта и окружающих его пород стационарна. Полагаем, что температуры скелета пористой среды и насыщающей её несжимаемой жидкости одинаковы, так как теплообмен (наряду с массообменом) между скелетом и жидкостью осуществляется сравнительно быстро. Это допущение выполняется вследствие большой удельной поверхности пористых сред глубоко залегающих пластов (~ ).

Жидкость считается несжимаемой, капиллярными силами, силой тяжести, а также температурными изменениями объёмов и тепловых свойств рассматриваемой системы пренебрегаем.

    1. Уравнение конвективной диффузии с учетом радиоактивного распада и обмена жидкости со скелетом

Постановка задачи о распределении концентрации вредных примесей при закачке растворов в глубоко залегающие пористые пласты основана на законе сохранения массы входящих в состав примесей. Для загрязнителя, находящегося в скелете пласта, справедливо уравнение неразрывности

(1.3.1)

где – диффузионный поток вещества в скелете, – соответственно плотность и коэффициент диффузии радиоактивного вещества в скелете, m – пористость скелета, – функция массообмена между скелетом и жидкостью, показывающая изменение плотности вещества в скелете за счёт диффузии молекул примеси из жидкости в скелет, – функция источников концентрации, определяющая потери загрязнителя за счёт радиоактивного распада.

Для загрязнителя, находящегося в жидкости, уравнение неразрывности принимает вид

,

(1.3.2)

где – диффузионный поток радиоактивного вещества в жидкости, текущей в пласте, – соответственно плотность и коэффициент диффузии радиоактивного вещества в жидкости. Будем считать, что процесс перехода молекул примеси из жидкости в скелет и её переход из скелета в жидкость определяется соотношением химических потенциалов . При этом, из закона сохранения следует, что потоки вещества из жидкости в скелет и обратно равны, но противоположны по знаку. Это приводит к появлению в правых частях уравнений одной и той же функции , но с противоположным знаком. Полагая далее пористость m постоянной, и складывая уравнения (1.3.1) и (1.3.2), получим

(1.3.3)

Равновесные концентрации примеси в скелете и в жидкости связаны между собой соотношением (изотерма сорбции), где – некоторая функция концентрации примеси в жидкости.

Будем считать, что зависимость концентрации примеси в скелете от концентрации её в жидкости линейна (изотерма Генри), что является хорошим приближением при сравнительно небольших концентрациях мигранта

,

(1.3.4)

где – коэффициент распределения загрязнителя между носителем и скелетом.

Тогда последнее уравнение принимает вид

(1.3.5)

Учитывая, что для несжимаемой жидкости , а следовательно, , из последнего уравнения получим

.

(1.3.6)

Здесь введено обозначение

(1.3.7)

– эффективный коэффициент диффузии в пласте. Из (1.3.6) следует, что в уравнении, описывающем миграцию загрязнителя, необходимо учитывать конвективный перенос загрязнителя, “осложнённый” наличием пористости в скелете и протекающими массообменными процессами между загрязнителем и скелетом. Уравнение (1.3.6) позволяет определить скорость конвективного переноса примесей в пористой среде по аналогии со скоростью конвективного переноса тепла и скоростью фильтрации

.

(1.3.8)

Скорость конвективного переноса примеси определяет положение фронта загрязнения Rd подобно тому, как скорость фильтрации определяет положение фронта закачиваемой жидкости Rw. При этом положение фронта закачиваемой жидкости определяется из баланса массы закачиваемой жидкости. В случае закачки с постоянной скоростью через скважину радиуса r0 выражение для Rw имеет вид

.

(1.3.9)

Соответствующие радиусы зоны загрязнения и термических возмущений определяются в пунктах 2.1 и 3.1.

1.4. Задача теплопереноса

1.4.1. Математическая постановка задачи теплопереноса и её обезразмеривание

Рассмотрим задачу о распространении радиоактивных примесей в пористом глубоко залегающем пласте, в который закачивается жидкость с растворёнными радиоактивными веществами. Такая задача является фундаментальной для подземного захоронения радиоактивных отходов и отходов химических производств.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее