109047 (Синтез ЖК. Дендримеры)

2016-07-30СтудИзба

Описание файла

Документ из архива "Синтез ЖК. Дендримеры", который расположен в категории "". Всё это находится в предмете "наука и техника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "наука и техника" в общих файлах.

Онлайн просмотр документа "109047"

Текст из документа "109047"

Синтез ЖК

ВВЕДЕНИЕ

В последнее время активно развивается новая область химии высокомолекулярных соединений, связанная с синтезом трёхмерных суперразветвлённых полимеров и олигомеров, называемых дендримерами . Этот класс соединений интересен тем, что при их получении c каждым элементарным актом роста молекулы количество разветвлений увеличивается в геометрической прогрессии. В результате с увеличением молекулярной массы таких соединений изменяются форма и жесткость молекул, что, как правило, сопровождается изменением физико-химических свойств дендримеров, таких как характеристическая вязкость, растворимость , плотность и др.

Существующие синтетические подходы позволяют получать регулярные дендримеры, макромолекулы которых обладают строго определённой молекулярной массой. Кроме того, следует отметить, что многие свойства дендримеров, такие как, например, температура стеклования и другие, в существенной степени зависят от химической природы концевых групп, располагающихся на поверхности таких шарообразных молекул. Всё вышесказанное вызывает интерес химиков-исследователей к синтезу дендритных макромолекул. Так, к настоящему времени синтезированы дендримеры на основе простых и сложных полиэфиров, полиамидов , полифениленов , полисилоксанов [3,], поликарбосиланов [,] и др. В литературе также имеются сведения о получении дендритных блок-сополимеров, содержащих на одной половине “молекулы-шара” гидрофобные фенильные поверхностные группы, а на другой - гидрофильные карбокси- группы , или на одной половине электроноакцепторные CN-группы, а на второй - электронодонорные фенилокси- группы . Перечисленные и многие другие публикации свидетельствуют об огромных возможностях молекулярного дизайна дендритных макромолекул.

В данной работе и вышедшей по ней публикации предлагается новый тип дендримеров - жидкокристаллические (ЖК) дендримеры, которые отличаются от ранее описанных в литературе [,] тем, что мезогенные группы, “отвечающие” за реализацию ЖК состояния, находятся только в поверхностном слое дендритных макромолекул регулярного строения.

Такие ЖК дендримеры представляются нам интересным объектом для исследований по следующим основным причинам.

Прежде всего следует отметить необычный, экзотический характер строения таких соединений, где каждая суперразветвлённая молекула может быть представлена в виде сферы, внутренняя часть которых состоит из немезогенных блоков, а наружная поверхность сферы образована мезогенными фрагментами. Подобное “микрогетерогенное” строение молекул должно предопределять склонность таких систем к микрофазовому разделению, подобно тому, как это имеет место в блок- и привитых сополимерах, склонных к образованию различного рода мезоморфных структур ламеллярного, гексагонального и др. типов . И в этом смысле изучение структурной организации дендримеров, построенных из разнородных блоков, часть из которых склонна к формированию ЖК фазы несомненно представляет существенный научный интерес как с точки зрения их молекулярной, так и надмолекулярной структуры.

Возможность создания “ЖК оболочки” (рубашки) вокруг центрального ядра, образованного дендритной матрицей, безусловно интересна и с практической точки зрения, поскольку открывает перспективы для использования таких соединений в качестве активных модификаторов механических, реологических и трибологических свойств полимеров, а также создания на их основе селективных мембран и носителей лекарственных препаратов.

Изучение ЖК дендримеров, по-существу, только начинается, а быстро растущее число опубликованных работ, посвящённых суперразветвлённым молекулам, не содержащих мезогенных групп, дают основание надеяться на привлечение внимания исследователей, работающих в области жидких кристаллов и ЖК полимеров к изучению этих необычных объектов.

Глава I. ЛИТЕРАТУРНЫЙ ОБЗОР

1. Дендримеры - новый тип высокомолекулярных соединений.

Термин дендример (“dendrimer”) происходит от английского слова “dendritic” - “ветвящийся, древовидный”. Его ввёл Д. А. Томалиа на первой международной конференции по полимерам, проходившей в Японии в августе 1984 г. . Синонимом слова дендример является арборол (“arborol”), которое ввёл Г.Р. Ньюком . Оно происходит от латинского “arbor”, что означает дерево. Сами эти названия говорят о специфичности строения таких соединений.

И действительно, если посмотреть на схематическое двухмерное изображение молекулы дендримера (рис. 2), в ней можно выделить центральный атом (или группу атомов), называемых начальным центром и отходящие от него “ветви”. Количество последних зависит от функциональности начального центра (NC) и обычно равно 1, 2, 3 или 4. Собственно дендримерами называют дендритные макромолекулы с NC і 2. В случае же NC =1 такие структуры принято называть монодендронами или просто дидендронами (см. рис. 2) [1]. Тогда дендримеры можно разделить на дендроны, тридендроны и т.д.

Рис. 2. Схематическое изображение дендритных макромолекул (двухмерная проекция, NB = 2 во всех случаях).

Разветвлённость каждой ветви дендримера (дендрона) зависит от функциональности элементарного звена такой макромолекулы (NB) и обычно равна 2 или 3. Для примера на рис. 2 представлены дендримеры с NB = 2.

Если через центр дендритной молекулы мысленно провести окружности, проходящие через существующие и потенциальные точки ветвления дендримера (рис. 3), и пронумеровать их, начиная с 0, можно увидеть, что благодаря симметричности молекулы все точки ветвления попадут на окружности. Максимальное полученное таким образом число называется номером генерации G данного дендримера .

Рис. 3. Двумерные проекции дендримера с NC = 3 и NB = 2 как функция генерации (G) 0 ё 4.

Используя введённые выше понятия функциональности центра NC и элементарного звена NB, а также номера генерации G, можно вычислить количество концевых групп, повторяющихся звеньев (степени полимеризации) и молярную массу дендримера как функцию генерации. Для идеальных систем справедливы следующие соотношения [1] :

Как видно из представленных формул, число концевых (поверхностных) групп в молекуле дендримера на каждой генерации растёт в геометрической прогрессии. В то же время размер молекулы, а следовательно и “поверхность”, доступная для размещения концевых групп на каждой генерации увеличивается лишь в квадратичной зависимости. Это приводит к тому, что плотность упаковки поверхностных групп дендримера тоже растёт от меньших генераций к большим. В следствии этого изменяются форма и жёсткость молекул дендримеров от рыхлых структур, по форме напоминающих “морские звёзды”, до жёстких шаров [1]. Однако это не может продолжаться до бесконечности, и наступает момент, когда все концевые группы уже не могут разместиться на поверхности сферы, образованной молекулой (так называемый парадокс Мальфусиана , поскольку плотность упаковки при этом превысила бы 1. В результате регулярный рост макромолекулы становится невозможным, однако дальнейший нерегулярный рост такой шарообразной молекулы вполне реален. Таким образом возникает предельное число генераций, до которого возможно формирование индивидуальных дендримеров.

Интересно отметить тот факт, что ещё в 1982 (!) году, т. е. до появления первых синтетических работ в этой области и даже самого термина дендример, вышла работа [21], в которой теоретически предсказывается существование этого предела. Более того, в ней предлагается простой метод расчёта предельной генерации для любых конкретных дендритных систем, основанный на вычислении теоретической плотности упаковки молекулы дендримера.

Остановимся подробнее на методах синтеза последних.

1.1. Основные подходы к синтезу дендритных макромолекул.

Основные предпосылки создания макромолекулярных систем восходят к работам П. Флори , который высказал предположение о возможности получения в высокофункциональной системе не сшитого и не циклического, а сильно разветвлённого полимера. Для достижения такого результата необходимо выполнить одно главное условие, назовём его условием Флори. Итак, если в мономере содержится более двух функциональных групп, одна из которых А, а остальные В, и если А не реагирует с А, и В с В, а имеет место только взаимодействие А с В, в результате которого образуется химическая связь А-В, то в этих условиях и может образоваться несшитый и не полициклический полимер, представленный на рис. 4.

Рис. 4. Схема неуправляемого синтеза дендримеров.

Если же теперь представить, что в том же самом исходном мономере не только А не взаимодействует с А, и В с В, но и А не взаимодействует с В, а образование химической связи происходит лишь при взаимодействии А с С, причём функциональная группа В на определённом этапе может быть трансформирована в С, то в результате использования такой схемы может быть реализован процесс полностью контролируемого роста молекулы (рис.5).

Процесс, представленный на рис. 4, называют неуправляемым синтезом дендримеров, поскольку размеры и молекулярная масса получаемого продукта определяются реакционной способностью образующихся промежуточных соединений и рядом кинетических факторов. При этом получается полидисперсный продукт нерегулярного строения. Преимуществом такого подхода является его одностадийность.

Рис. 5. Схема управляемого синтеза дендримеров.

Вторую схему (рис. 5) называют управляемым синтезом дендримеров, поскольку продукт, полученный на каждой стадии, можно выделить в виде индивидуального соединения. В этом случае решающее значение имеет принцип защиты реакционных групп (А не реагирует с В, а реагирует только с С). При управляемом синтезе полимер собирается “послойно” с помощью последовательности чередующихся реакций наращивания “слоя” и снятия защиты. В результате получается монодисперсный продукт, молекулярная масса и размеры которого строго определяются числом проведённых реакций или номером генерации G, означающем число наращенных слоёв. При этом можно остановиться на любой стадии и получить дендример любой генерации и с любыми функциональными группами на поверхности.

Рассмотрим теперь конкретные примеры синтезированных на сегодняшний день дендримеров.

1.1.1 Неуправляемый синтез.

В самых первых работах для описания систем, имеющих случайную разветвлённую топологию и широкое молекулярно-массовое распределение, использовался термин “поликонденсаты”. Так, описаны методы синтеза, основанные на конденсации бензилгалогенидов по Фриделю-Крафтсу и поликонденсации 2,5,6-трибромфенола с образованием арилового эфира .

Более поздние примеры поликонденсации такого типа приводят к образованию полностью ароматических, полиэфирных, металлоорганиче-ских и кремнийсодержащих гиперразветвлённых систем. В основном конечные продукты существенно более полидисперсны, чем продукты, полученные по управляемому методу (см. гл. 1.1.2.) с идеальностью ветвления 50-75%.

Рис. 6. Схема синтеза саморегулирующихся кремнийорганических дендритных систем [10].

Так, Музафаров с соавт. [10] получили различные кремний-органические дендритные системы с помощью реакции гидросилили-рования на основе простейших мономеров типа винилметилсилана, дивинилметилсилана, диаллилметилсилана и др. (рис. 6).

Авторы называют данные системы саморегулирующимися. Саморегуляция происходит потому, что с увеличением плотности упаковки в поверхностном слое молекулы дендримера реакционная способность концевых групп уменьшается. В то же время реакционная способность “отставших”, непрореагировавших групп в предыдущем слое остаётся высокой, в результате чего они как бы “навёрстывают упущенное”, реагируя быстрее до тех пор, пока реакционные группы на этом участке окажутся в поверхностном слое. Таким образом, стерические затруднения в поверхностном слое в случае нерегулярного роста приводят к образованию шарообразных молекул примерно одинакового размера.

Выход в зависимости от природы мономера и условий реакции составлял 80 - 90 %. Полученные продукты представляли собой вязкие жидкости с молярной массой от 6ґ103 до 3ґ105 в зависимости от условий реакции.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее