86417 (Обобщённо булевы решетки)

2016-07-29СтудИзба

Описание файла

Документ из архива "Обобщённо булевы решетки", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86417"

Текст из документа "86417"

Федеральное агентство по образованию

Государственное образовательное учреждение
высшего профессионального образования
Вятский государственный гуманитарный университет

Математический факультет

Кафедра алгебры и геометрии

Выпускная квалификационная работа

Обобщенно булевы решетки


Выполнил:

студент V курса математического факультета

Онучин Андрей Владимирович

Научный руководитель:

к.ф.-м.н., доцент кафедры алгебры и геометрии ВятГГУ
Чермных Василий Владимирович

Рецензент:

д.ф.-м.н., профессор, зав. кафедрой алгебры и геометрии ВятГГУ

Вечтомов Евгений Михайлович

Работа допущена к защите в государственной аттестационной комиссии

«___» __________2005 г. Зав. кафедрой Е.М. Вечтомов

«___»__________2005 г. Декан факультета В.И. Варанкина

Киров

2005

Содержание

Введение 3

Глава 1 4

1.1. Упорядоченные множества 4

1.2. Решётки 5

1.3. Дистрибутивные решётки 7

1.4. Обобщённые булевы решётки, булевы решётки 8

1.5. Идеалы 9

Глава 2 11

2.1. Конгруэнции 11

2.2. Основная теорема 16

Библиографический список 22


Введение

Булева решётка представляет собой классический математический объект, который начал интенсивно изучаться в работах М. Стоуна 30-е годы 20-го века, расширением этого понятия до обобщённо булевых решёток занимались Г. Гретцер и Е. Шмидт в своих трудах конца 50-х годов.

Цель данной работы: установление взаимно однозначного соответствия между конгруэнциями и идеалами в обобщённо булевых решётках. (Для булевых решёток это положение доказано в книге [2], кроме того, сформулировано в книге [3] в качестве упражнений). А также – установление связи между обобщённо булевыми решётками и булевыми кольцами.

Данная дипломная работа состоит из двух глав: в первой главе даны основные понятия, а так же содержатся базовые сведения из теории решёток. Кроме того, в первой главе рассмотрено несколько простейших теорем.

Вторая глава представляет собой основную часть данной дипломной работы. Опираясь на работы Гретцера Г., но более подробно, рассмотрены свойства конгруэнций и связь конгруэнций и идеалов в обобщённо булевых решётках (Теоремы 2.1, 2.2, 2.3.). Кроме того реализована основная цель данной дипломной работы: установлена связь между булевыми кольцами и обобщённо булевыми решётками (Основная теорема).


Глава 1

1.1. Упорядоченные множества

Упорядоченным множеством P называется непустое множество, на котором определено бинарное отношение , удовлетворяющее для всех следующим условиям:

1. Рефлексивность: .

2. Антисимметричность. Если и , то .

3. Транзитивность. Если и , то .

Если и , то говорят, что меньше или больше , и пишут или .

Примеры упорядоченных множеств:

  1. Множество целых положительных чисел, а означает, что делит .

  2. Множество всех действительных функций на отрезке и означает, что для .

Цепью называется упорядоченное множество, на котором для любых имеет место или .

Используя отношение порядка, можно получить графическое представление любого конечного упорядоченного множества P. Изобразим каждый элемент множества P в виде небольшого кружка, располагая x выше y, если . Соединим x и y отрезком. Полученная фигура называется диаграммой упорядоченного множества P.

П римеры диаграмм упорядоченного множества:


1.2. Решётки

Верхней гранью подмножества Х в упорядоченном множестве Р называется элемент a из Р, больший или равный всех x из X.

Точная верхняя грань подмножества X упорядоченного множества P – это такая его верхняя грань, которая меньше любой другой его верхней грани. Обозначается символом sup X и читается «супремум X ».

Согласно аксиоме антисимметричности упорядоченного множества, если точная верхняя грань существует, то она единственна.

Понятия нижней грани и точной нижней грани (которая обозначается inf X и читается «инфинум ») определяются двойственно. Также, согласно аксиоме антисимметричности упорядоченного множества, если точная нижняя грань X существует, то она единственна.

Р ешёткой

называется упорядоченное множество L, в котором любые два элемента x и y имеют точную нижнюю грань, обозначаемую , и точную верхнюю грань, обозначаемую .

Примеры решёток:

Примечание. Любая цепь является решёткой, т.к. совпадает с меньшим, а с большим из элементов .

Наибольший элемент, то есть элемент, больший или равный каждого элемента упорядоченного множества, обозначают 1, а наименьший элемент, то есть меньший или равный каждого элемента упорядоченного множества, обозначают 0.

На решётке можно рассматривать две бинарные операции:

- сложение и

- произведение

Эти операции обладают следующими свойствами:

1. , идемпотентность;

2. , коммутативность;

3. , ассоциативность;

4. , законы поглощения.

ТЕОРЕМА 1.1. Пусть L - множество с двумя бинарными операциями , обладающими свойствами (1) – (4). Тогда отношение (или ) является порядком на L, а возникающее упорядоченное множество оказывается решёткой, причём: и .

Доказательство. Рефлексивность отношения вытекает из свойства (1). Заметим, что оно является следствием свойства (4):

Если и , то есть и , то в силу свойства (2), получим . Это означает, что отношение антисимметрично.

Если и , то применяя свойство (3), получим: , что доказывает транзитивность отношения .

Применяя свойства (3), (1), (2), получим:

,

.

Следовательно, и .

Если и , то используя свойства (1) – (3), имеем:

, т.е. .

По определению точней верхней грани убедимся, что .

Из свойств (2), (4) вытекает, что и .

Если и , то по свойствам (3), (4) получим:

.

Отсюда по свойствам (2) и (4) следует, что

.

Таким образом, .

Пусть L решётка, тогда её наибольший элемент 1 характеризуется одним из свойств:

1. .

2. .

Аналогично характеризуется наименьший элемент :

1.

2. .

1.3. Дистрибутивные решётки

Решётка L называется дистрибутивной, если для любых выполняется:

D1. .

D2. .

В любой решётке тождества D1 и D2 равносильны. Доказательство этого факта содержится в книге [2], стр. 24.

Примеры дистрибутивных решёток:

  1. Множество целых положительных чисел, означает, что делит . Это решётка с операциями НОД и НОК.

  2. Любая цепь является дистрибутивной решёткой.

Т ЕОРЕМА 1.2. Решётка L с 0 и 1 является дистрибутивной тогда и только тогда, когда она не содержит подрешёток вида

Доказательство этой теоремы можно найти в книге [1].

1.4. Обобщённо булевы решётки, булевы решётки

Всюду далее под словом «решётка» понимается произвольная дистрибутивная решётка с 0.

Решётка L называется обобщённой булевой, если для любых элементов и d из L, таких что существует относительное дополнение на интервале , т.е. такой элемент из L, что и .

(Для , , интервал | ; для , можно так же определить полуоткрытый интервал | ).

ТЕОРЕМА 1.3. (О единственности относительного дополнения в обобщённо булевой решётке). Каждый элемент обобщённо булевой решётки L имеет только одно относительное дополнение на промежутке.

Доказательство. Пусть для элемента существует два относительных дополнения и на интервале . Покажем, что . Так как относительное дополнение элемента на промежутке , то и , так же относительное дополнение элемента на промежутке , то и .

Отсюда

,

таким образом , т.е. любой элемент обобщённой булевой решётки имеет на промежутке только одно относительное дополнение.

Решётка L называется булевой, если для любого элемента из L существует дополнение, т.е. такой элемент из L, что и

ТЕОРЕМА 1.4. (О единственности дополнения в булевой решётке). Каждый элемент булевой решётки L имеет только одно дополнение.

Доказательство аналогично доказательству теоремы 1.3.

ТЕОРЕМА 1.5. (О связи обобщённо булевых и булевых решёток).

Любая булева решётка является обобщённо булевой, обратное утверждение не верно.

Доказательство. Действительно, рассмотрим произвольную булеву решётку L. Возьмём элементы a и d из L, такие что . Заметим, что относительным дополнением элемента a до элемента d является элемент , где a’ – дополнение элемента a в булевой решётке L. Действительно, , кроме того . Отсюда следует, что решётка L является обобщённо булевой.

1.5. Идеалы

Подрешётка I решётки L называется идеалом, если для любых элементов и элемент лежит в I. Идеал I называется собственным, если . Собственный идеал решётки L называется простым, если из того, что и следует или .

Так как непустое пересечение любого числа идеалов снова будет идеалом, то мы можем определить идеал, порождённый множеством H в решётке L, предполагая, что H не совпадает с пустым множеством. Идеал, порождённый множеством H будет обозначаться через (H]. Если , то вместо будем писать и называть главным идеалом.

ТЕОРЕМА 1.5. Пусть L – решётка, а H и I – непустые подмножества в L, тогда I является идеалом тогда и только тогда, когда если , то , и если , то .

Доказательство. Пусть I – идеал, тогда влечёт за собой , так как I – подрешётка. Если , то и условия теоремы проверены.

Обратно, пусть I удовлетворяет этим условиям и . Тогда и так как , то , следовательно, I – подрешётка. Наконец, если и , то , значит, и I является идеалом.


Глава 2

2.1. Конгруэнции

Отношение эквивалентности (т.е. рефлексивное, симметричное и транзитивное бинарное отношение) на решётке L называется конгруэнцией на L, если и совместно влекут за собой и (свойство стабильности). Простейшими примерами являются ω, ι, определённые так:

(ω) ; (ι) для всех .

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее