85797 (Расширение кольца с помощью полутела), страница 2

2016-07-29СтудИзба

Описание файла

Документ из архива "Расширение кольца с помощью полутела", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85797"

Текст 2 страницы из документа "85797"

3)2). Поскольку R радикально по Джекобсону, алгебра Q+R с операциями

(q1,r1)+(q2,r2) = (q1+q2)+(r1+r2), (q1,r1)(q2,r2) = (q1q2,q1r2+r1q2+r1r2)

является полутелом с единичным элементом (1,0). А множество S(Q+{0})R с теми же операциями совпадает с (Q+R) ({0}R) = (Q+R) R.

Примеры. 1. Любое ниль-кольцо радикально по Джекобсону. В частности таково кольцо с нулевым умножением.

Ещё одним частным случаем является нильпотентное кольцо R, порождённое одним элементом .

Пусть - образующий. Поскольку в качестве элементов R выступают p1 + p22 + … + pn-1n-1, piQ, n - наименьшая нулевая степень , T  R - в точности совпадает с одним из двух полуколец.

(q+q1 + q22 + … + qn-1n-1,p1 + p22 + … + pn-1n-1)qQ+,qi,piQ или

(q+q1 + q22 + … + qn-1n-2,p1 + p22 + … + pn-1n-1)qQ+,qi,piQ

c операциями

(q1,r1)+(q2,r2= (q1+q2)+(r1+r2), (q1,r1)(q2,r2=  (q1q2,q1r2+r1q2+r1r2).

2. Радикальным по Джекобсону будет кольцо, совпадающее с подмножеством гипердействительных чисел R(0). Это коммутативное кольцо без делителей нуля. a(0), a+x+ax = 0x = (-a)/(1+a)(0)

Моделью представленного полукольца является прямое произведение двух подмножеств кольца Q[x]: многочленов с неотрицательным свободным членом и многочленов с положительным свободным членом. Множество пар, вида (q+q1 + q22 + … + qn-1l,p1 + p22 + … + pn-1m)qQ+,qi,pi

Соответственно частному функций задаются все операции в этом множестве (разумеется, берётся не всё множество пар, а множество классов факторполукольца, где две пары эквивалентны тогда и только тогда, когда равны произведения их противоположных координат).

Этот пример легко обобщается для многочленов от произвольного множества переменных.

§2. Допустимые полутела

Дальнейший ряд предложений направлен на отыскание всевозможных полутел P , что P R.

Замечания. 1. Пусть дано допустимое кольцо R, тогда множество элементов M = {mRrR|rm = mr =0} образует в нём подкольцо.

2. Множество элементов E = {R,1+=1} образует в M и в R двусторонний идеал с делимой аддитивной группой.

3. Множество Q+×(R/I) является полутелом с операциями (q1,r1)+(q2,r2= (q1+q2)+(r1+r2), (q1,r1)(q2,r2= (q1q2,q1r2+r1q2+r1r2), где I - произвольный идеал с делимой аддитивной группой кольца R.

Теорема 2. Пусть R, U, D - допустимая тройка и R ненулевое. Тогда множество Q++R есть подполутело U, изоморфное ((R/I)Q+), где I некоторый идеал аннулятора с делимой аддитивной группой. И существует канонический гомоморфизм полутела U в кольцо R-модульных эндоморфизмов End RR, образ которого содержит Q+. Если правый аннулятор кольца R нулевой, то полутело Im содержит подполутело, изоморфное ((R/I)Q+).

Доказательство. Пусть T, R - из допустимой тройки. Любой элемент T представим в виде q+r,qQ+,rR. Два элемента q+r1 и q+r2 равны тогда и только тогда, когда 1+r1-r2=1. С другой стороны, если 1+r = 1, то 1+r1+r=1+r1. Поэтому все элементы вида q+r+, 1+=1 сливаются в классы q×(R/I), где I - множество всех .

Отображение u: RuR, uU ввиду дистрибутивности и ассоциативности в U R является Rмодульным эндоморфизмом. Пусть u+v:R(u+v)R и uv:RuvR, тогда отображение : U End RR, сопоставляющее каждому элементу uU эндоморфизм u - канонический гомоморфизм.

Пусть правый аннулятор R нулевой, тогда для двух элементов q1+r1, q2+r2, считая без ограничения общности, q1=q2+q3 (q3 может равняться нулю), r, (q1+r1)r=(q2+r2)r(q3+r1-r2)r=0q3=0,r1=r2. Элементы q1+r1 и q2+r2 одинаково действуют на R только в случае равенства. Поэтому - мономорфизм и Im содержит подполутело, изоморфное ((R/I)Q+).

Замечание. Система (Q+×(R/I))({0}×R) с операциями (q1,r1)+(q2,r2= (q1+q2)+(r1+r2), (q1,r1)(q2,r2= (q1q2,q1r2+r1q2+r1r2) и произвольным идеалом аннулятора с делимой аддитивной группой I является дизъюнктным объединением. Сложение класса (R/I) с элементом кольца определяется как сложение любого элемента этого класса с элементом кольца.

§3. О единственности расширения

При изучении структуры дизъюнктных объединений кольца и полутела возникает вопрос о единственности U R для данных U и R. Ниже приведём пример существования несовпадающих дизъюнктных объединений при заданных U и R.

Пусть для данных полутела U и кольца R существует коммутативное U R и пусть tR не лежит в AnnR, но trAnnRrR (примером такого дизъюнктного объединения с элементом t служит

(q+q1 + q22 + … + qn-1n-1,p1 + p22 + … + pn-1n-1)qQ+,qi,piQ из примера 1).

Определим новые операции на UR следующим образом: Умножение оставим неизменным, а сложение элементов rR и uU сложение зададим законом ur=u+r+rt. Поскольку операции внутри полутела и кольца при этом не меняются, достаточно проверить выполнение законов:

1. Ассоциативность сложения:

(u1u2)r=u1(u2r)u1+u2+r+rt= u1+u2+r+rt

(ur1)r2=u(r1r2)u+r1+r1t+r2+r2t=u+r1+r2+(r1+r2)t.

2. Дистрибутивность:

u1(ru2)=u1ru1u2u1(r+u2+rt)=u1u2+u1r+u1rt

r1(ur2)=r1ur1r2r1u+r1r2+r1r2t=r1u+r1r2.

Таким образом, UR с новыми операциями является дизъюнктным объединением. Однако, два имеющихся полукольца изоморфны между собой, поскольку существует изоморфизм f:uuuU:

r(1+t)-1rrR. Причём ft :r(1+t)-1rrRавтоморфизм R.

Доказательство. Имеем ftавтоморфизм R, поскольку для каждого элемента r имеется свой праобраз (1+t)r. И выполняются тождества

r1,r2, ft(r1+r2)=(1+t)-1(r1+r2)= (1+t)-1r1+(1+t)-1r2=ft(r1)+ ft(r2)

r1,r2,(1+t)-1(r1r2)=(1+t)-1(1+t)-1(r1r2),

поскольку (1+t)r1r2=r1r2. Поэтому в виду коммутативности полукольца ft(r1r2)= ft(r1)ft (r2).

Поскольку при отображении f кольцо и полутело автоморфно переходят в себя, изоморфизм полуколец вытекает из следующих тождеств:

uU, rR f(u+r)=u+r= u+r+(1+t)-1r f(u)f(r)

uU, rR f(ur)=(1+t)-1ur=u(1+t)-1r=f(u) f(r).

Вопрос о том, единственным ли является дизъюнктное объединение с точностью до изоморфизма остаётся открытым.

Заключение

В дипломной работе представлено описание 0-1-расширений кольца R и полутела U с помощью решетки L. Установлены, следующие факты:

существование 0-1-расширения не зависит от строения дистрибутивной решётки L (теорема 1);

кольцо R состоит в какой либо допустимой тройке тогда и только тогда, когда оно радикально по Джекобсону (теорема 1);

строение полутела U существенно зависит от строения R (теорема 2).

Не решённым остаётся вопрос о единственности с точностью до изоморфизма U R. В работе устанавливается взаимосвязь между значимыми математическими структурами - кольцами и полутелами. Подобные взаимосвязи могут существовать и между другими объектами алгебры, существенным может оказаться изучение и обобщение таких взаимосвязей.

Библиографический список

  1. Вечтомов Е.М. Две общие структурные теоремы о полумодулях // Абелевы группы и модули: сб. статей / Под ред. А.В. Михалева. Вып. 15. –Томск: ТГУ, 2000. – С. 17-23.

  2. Вечтомов Е.М., Михалев А.В., Чермных В.В. Абелево-регурярные положительные полукольца // Труды семинара им. И.Г. Петровского. – 2000. – Т 20. – С. 282-309.

  3. Golan J.S. The theory of semirings with applications in mathematics and theoretical computer science // Pitman monographs and surveys in pure and applied mathematics. V. 54. – 1992. – S. 93-98.

  4. Семенов А.Н. О строении полутел // Вестник ВятГГУ. – 2003. – № 8. – С. 105-107.

  5. Херстейн И. Некоммутативные кольца. – М.: Мир, 1972. – 200 с.

16



Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее