85541 (Возвратные задачи)

2016-07-29СтудИзба

Описание файла

Документ из архива "Возвратные задачи", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85541"

Текст из документа "85541"

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет

Математический факультет

Кафедра алгебры и геометрии

Выпускная квалификационная работа

Возвратные задачи

Выполнила:

студентка V курса математического факультета

Ковязина Юлия Николаевна

Научный руководитель:

кандидат физико-математических наук, доцент кафедры алгебры и геометрии И.А.Семенова

Рецензент:

ст. преподаватель кафедры алгебры и геометрии

А.Н.Семенов

Допущена к защите в государственной аттестационной комиссии

«___» __________2005 г. Зав. Кафедрой Е.М. Вечтомов

«___»___________2005 г. Декан факультета В.И. Варанкина

Киров 2005

Содержание

Введение 3

Глава 1. 6

1.1 Задача о ханойской башне 6

1.2 Задача о разрезании пиццы 7

1.3 Задача Иосифа Флавия 10

Глава 2. Решение задач 19

Заключение 41

Библиографический список 42

Введение

Дискретная математика в настоящее время играет большую роль в разработке принципов работы компьютера, т.к. работа компьютера представляет собой выполнение последовательности дискретных шагов, приводящих к решению поставленной перед компьютером задачи.

Рассмотренная мною тема «Возвратные задачи» является небольшой частью дискретной математики, поэтому данная тема на сегодняшний момент является не менее актуальной.

Цель моей работы – изучить имеющийся теоретический и практический материал по данной теме и применить его к решению задач.

Данная работа состоит из введения, двух глав и заключения. Во введении приводятся примеры рекуррентных соотношений, с помощью которых можно задать некоторые последовательности, а так же рекуррентные соотношения, которые могут использоваться при решении задач. В первой главе описываются три задачи: задача о ханойской башне, задача о разрезании пиццы и задача Иосифа Флавия, а также доказываются некоторые факты, которые в литературе предлагаются для самостоятельного доказательства. Вторая глава посвящена решению задач на данную тему. В заключении делаются выводы о проделанной работе и указываются дальнейшие перспективы.

В основе решения возвратных задач лежит идея возвратности (или рекуррентности), согласно которой решение всей задачи зависит от решения той же самой задачи меньших размеров.

Тема «Возвратные последовательности» не является изолированной, нигде не используемой теорией. Наоборот, возвратные последовательности близки к школьному курсу математики (арифметическая и геометрическая прогрессии, последовательности квадратов и кубов натуральных чисел и т.д.), используются в высшей алгебре, геометрии, математическом анализе и других математических дисциплинах. Теория возвратных последовательностей составляет особую главу математической дисциплины, называемой исчислением конечных разностей; представляет собой частную главу о последовательностях.

Таким образом, возвратные последовательности являются настоящей маленькой теорией, законченной, простой, ясной.

Определение: Пусть имеется последовательность {un}:

u1, u2, u3,…, un, … (1)

Если существует натуральное число k и числа a1, a2, a3, …,ak (действительные или мнимые) такие что, начиная с некоторого номера n и для всех следующих номеров

un+k=a1∙un+k-1 + a2∙un+k-2 +…+ak∙un при n ≥ 1 (2)

то последовательность (1) называется возвратной последовательностью порядка k , а соотношение (2) – возвратным (рекуррентным) уравнением порядка k.

Таким образом, зная k первых членов последовательности можно определить всю последовательность, т.е. вычислить любой наперед заданный член последовательности.

С помощью рекуррентных соотношений можно задать следующие последовательности:

1). Геометрическая прогрессия

un+1 = q∙un

2). Арифметическая прогрессия

un+1 = un + d

другой вид un+2 = 2∙un+1 − un

3). Последовательность чисел Фиббоначи

un+2 = un+1 +un

4). Последовательность квадратов натуральных чисел

un+1 = un + 2∙n + 1

другой вид un+3 = 3∙un+2 − 3∙un+1 + un

5). Последовательность кубов натуральных чисел

un+4 = 4∙un+3 − 6∙un+2 +4∙un+1 − un

6). Все периодические последовательности: u1, u2, …, uk+1, …

un+k = un.

Также рекуррентные соотношения могут использоваться при решении задач (в частности, при доказательстве равенств):

7). Интегрирование простейших рациональных дробей IV типа

Обозначим Im= , где t = x+

Im= ∙Im-1

8). Интеграл In=

In= ∙In-2

9). Формула длины стороны при удвоении числа сторон правильного вписанного многоугольника

an= , при n ≥ 2

R – радиус описанной окружности

Если сторона a1 исходного правильного вписанного многоугольника задана, то an есть сторона многоугольника, полученного из исходного (n-1) кратным удвоением числа сторон.

10). Дифференциальные уравнения высших порядков

y(n) = f(x, y, y', y», …, y(n-1))

11). Определитель Вандермонда

n=∆(x1, x2, …, xn)=

∆ (x1, x2, …, xn) =(xn −x1)(xn-1−x1)…(x2−x1)∙∆(x2, x3, …,xn).

Глава 1

1.1. Задача о ханойской башне

Рассмотрим сначала маленькую изящную головоломку под названием ханойская башня, которую придумал французский математик Эдуард Люка в 1883 г. Башня представляет собой восемь дисков, нанизанных в порядке уменьшения размеров на один из трех колышков. Задача состоит в том, чтобы переместить всю башню на один из других колышков, перенося каждый раз только один диск, и не помещая больший диск на меньший.

Будем решать эту задачу в общем виде, т.е. посмотрим, что будет в случае n дисков.

Будем говорить, что Tn есть минимальное число перекладываний, необходимых для перемещения n дисков с одного колышка на другой по правилам Люка.

Рассмотрим крайние случаи: Т0=0, T1=1, T2=3, T3=7. Эксперимент с тремя дисками дает ключ к общему правилу перемещения n дисков: сначала мы перемещаем (n−1) меньших дисков на любой из колышков (что требует Тn-1 перекладываний), затем перекладываем самый большой диск (одно перекладывание ) и, наконец, помещаем (n−1) меньших дисков обратно на самый большой диск (еще Тn-1 перекладываний). Таким образом, n дисков (при n>0) можно переместить самое большое за 2Tn-1+1 перекладываний (т.е. достаточно перекладываний): Tn ≤ 2Tn-1+1.

Сейчас покажем, что необходимо 2Tn-1+1 перекладываний. На некотором этапе мы обязаны переместить самый большой диск. Когда мы это делаем, (n−1) меньших дисков должны находиться на одном колышке, а для того чтобы собрать их вместе, потребуется по меньшей мере Тn-1 перекладываний. Самый большой диск можно перекладывать и более одного раза. Но после перемещения самого большого диска в последний раз мы обязаны поместить (n−1) меньших дисков (которые опять должны находиться на одном колышке) обратно на наибольший диск, что также требует Тn-1 перекладываний. Следовательно, Tn ≥ 2Tn-1+1.

Эти два неравенства вместе с тривиальным решением при n=0 дают рекуррентное соотношение:

(1)

Т0=0

Tn = 2Tn-1+1 при n>0

При достаточно большом n для вычисления Тn потребуется слишком много времени, поэтому получим Тn в простой, компактной, «замкнутой форме», что позволит вычислить Тn быстро.

Первый способ решения (угадывание правильного решения с последующим доказательством, что наша догадка верна).

Вычислим: Т3=2∙3+1=7; Т4=2∙7+1; Т5=2∙15+1; Т6=2∙31+1=63. Теперь можно сделать предположение, что

Тn =2n − 1 при n≥0. (2)

Докажем методом математической индукции по числу n:

  1. База: n=0, Т0=20–1=1–1=0 (верно);

  2. Индуктивный переход: пусть доказано для всех чисел t ≤ (n–1). Докажем для t=n: Тn= 2Tn-1+1 2(2n-1−1)+1 = 2∙2n-1−2+1 = 2n − 1

Из пунктов 1 и 2 следует: при n≥0 Тn = 2n − 1

Второй способ решения.

К обеим частям соотношения (1) прибавим 1:

Т0+1 = 1,

Тn+1 = 2Tn-1+2 при n>0.

Обозначим Un = Tn+1, тогда получим

U0 = 1

Un = 2Un-1 при n>0.

Решением этой рекурсии есть Un=2n; следовательно Тn = 2n−1.

1.2. Задача о разрезании пиццы

Формулировка задачи: сколько кусков пиццы можно получить, делая n прямолинейных разрезов ножом? Или, каково максимальное число Ln областей, на которые плоскость делится n прямыми?

С

1

нова начнем с рассмотрения крайних случаев.

Эксперимент с тремя прямыми показывает, что добавленная третья прямая может рассекать самое большое три старых области вне зависимости от того, как расположены первые две прямые:

Т аким образом, L3=4+3=7 – самое большое, что можно сделать.

Обобщая, приходим к следующему выводу: новая n-я прямая (при n>0) увеличивает число областей на k когда рассекает k старых областей когда пересекает прежние прямые в (k−1) различных местах. Две прямые могут пересекаться не более чем в одной точке. Поэтому новая прямая может пересекать (n−1) старых прямых не более чем в (n−1) различных точках, и мы должны иметь k ≤ n. Установлена верхняя граница:

Ln ≤ Ln-1+ n при n>0

В этой формуле можно достичь равенства следующим образом: проводим n-ю прямую так, чтобы она не была параллельна никакой другой прямой (следовательно, она пересекает каждую из них) и так, чтобы она не проходила ни через одну из имеющихся точек пересечения (следовательно, она пересекает каждую из прямых в различных местах). Поэтому рекуррентное соотношение имеет вид:

L0 = 1

Ln = Ln-1+ n при n > 0

Теперь получим решение в замкнутой форме.

Ln = Ln-1+ n = Ln-2+ (n−1) + n = Ln-3+ (n−2) + (n−1) + n = … = L0+ 1 + 2+ +… + (n−2) + (n−1) + n = 1 +

Ln = + 1 при n ≥ 0 (3)

Докажем полученное равенство методом математической индукции.

  1. База: n=0, L0= = 1 (верно);

  2. Индуктивный переход: пусть доказано для всех чисел t ≤ (n–1). Докажем для t=n:

Ln = Ln-1+ n = =

Из пунктов 1 и 2 следует: при n ≥ 0 Ln = + 1

А

3

теперь небольшая вариация на тему прямых на плоскости: предположим, что вместо прямых линий мы используем ломаные линии, каждая из которых представлена одним «зигом». Каково максимальное число Zn областей, на которые плоскость делится n такими ломаными линиями?

Ч

2

астные случаи:

4

2


6

7


1

1

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее