47228 (Исполняемое Win32 приложение)

2016-07-29СтудИзба

Описание файла

Документ из архива "Исполняемое Win32 приложение", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "47228"

Текст из документа "47228"

РЕФЕРАТ

Пояснительная записка содержит: 43 страницы, 8 рисунков, 5 формул.

Цель – закрепление знаний, полученных при изучении технологии программирования гибких компьютеризированных систем; приобретение практических навыков в создании программных проектов с использованием среды программирования MS Visual Studio; изучение принципов и методов создания приложений с использованием библиотеки Microsoft Foundational Classes (MFC), изучение основ теории нечетких множеств, в частности функций принадлежности.

Результат – исполняемое приложение, реализующее построение функций принадлежности и определение степени принадлежности выбранной точки.

Ключевые слова: НЕЧЕТКОЕ МНОЖЕСТВО, ФУНКЦИЯ ПРИНАДЛЕЖНОСТИ, СТЕПЕНЬ ПРИНАДЛЕЖНОСТИ, ПРОГРАММА, C++, MFC, MICROSOFT VISUAL STUDIO.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. АНАЛИЗ ТЕХНИЧЕСКОГО ЗАДАНИЯ

2. АНАЛИЗ ТЕХНИЧЕСКИХ РЕШЕНИЙ

2.1 Библиотека MFC

2.2 Нечеткая логика – математические основы

2.3 Применение нечеткой логики

3. ПРОЕКТИРОВАНИЕ ФУНКЦИОНАЛЬНОЙ СТРУКТУРЫ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

4. ПРОГРАММНАЯ РЕАЛИЗАЦИЯ

ВЫВОДЫ

ПЕРЕЧЕНЬ ССЫЛОК

Приложение А. Исходный текст программы

ВВЕДЕНИЕ

Математическая теория нечетких множеств (fuzzy sets) и нечеткая логика (fuzzy logic) являются обобщениями классической теории множеств и классической формальной логики. Данные понятия были впервые предложены американским ученым Лотфи Заде (Lotfi Zadeh) в статье "Fuzzy Sets" (Нечеткие Множества) в 1965 году в журнале Information and Control. Основной причиной появления новой теории стало наличие нечетких и приближенных рассуждений при описании человеком процессов, систем, объектов.

Идея, лежащая в основе теории нечетких множеств, заключается в том, что человек в своей повседневной жизни мыслит и принимает решения на основе нечетких понятий. Создание теории нечетких множеств ‑ это попытка формализовать человеческий способ рассуждений. Развитие вычислительной техники позволяет в настоящее время создавать на базе теории нечетких множеств системы нечеткой логики, которые копируют способ рассуждений человека.[2]

Прежде чем нечеткий подход к моделированию сложных систем получил признание во всем мире, прошло не одно десятилетие с момента зарождения теории нечетких множеств. И на этом пути развития нечетких систем принято выделять три периода[5].

Первый период (конец 60-х – начало 70 гг.) характеризуется развитием теоретического аппарата нечетких множеств (Л. Заде, Э. Мамдани, Беллман). Во втором периоде (70–80-е годы) появляются первые практические результаты в области нечеткого управления сложными техническими системами (парогенератор с нечетким управлением). Одновременно стало уделяться внимание вопросам построения экспертных систем, построенных на нечеткой логике, разработке нечетких контроллеров. Нечеткие экспертные системы для поддержки принятия решений находят широкое применение в медицине и экономике. Наконец, в третьем периоде, который длится с конца 80-х годов и продолжается в настоящее время, появляются пакеты программ для построения нечетких экспертных систем, а области применения нечеткой логики заметно расширяются. Она применяется в автомобильной, аэрокосмической и транспортной промышленности, в области изделий бытовой техники, в сфере финансов, анализа и принятия управленческих решений и многих других.

Триумфальное шествие нечеткой логики по миру началось после доказательства в конце 80-х Бартоломеем Коско знаменитой теоремы FAT (Fuzzy Approximation Theorem). В бизнесе и финансах нечеткая логика получила признание после того как в 1988 году экспертная система на основе нечетких правил для прогнозирования финансовых индикаторов единственная предсказала биржевой крах. И количество успешных фаззи-применений в настоящее время исчисляется тысячами.

В гибких компьютеризированных системах, как правило, обрабатываемые данные носят четкий, числовой характер. Однако иногда могут присутствовать неточности и неопределенности, часто приходится находить разумный компромисс между понятиями "точность" и "важность". В этом случае на помощь приходит концепция нечеткой логики.

1. АНАЛИЗ ТЕХНИЧЕСКОГО ЗАДАНИЯ

Целью работы является разработка исполняемого Win32 приложения с визуальным интерфейсом, обеспечивающим построение функций принадлежности. Для реализации отмеченной функциональности необходимо:

а) спроектировать визуальный интерфейс приложения, включающий в себя кнопки доступа к функциям построения графика, выбора типа функции принадлежности, полей ввода исходных данных;

б) определить область отображения графика;

в) реализовать построение функций принадлежности таких типов: треугольная, трапециидальная, гауссовская, расширенная гауссовская, сигмоидальная с учетом масштаба;

г) реализовать возможность определения степени принадлежности точки для заданного типа функции принадлежности;

д) произвести тестирование приложения на множестве исходных данных.

В целях сокращения времени на разработку визуального интерфейса в операционной системе Microsoft Windows, целесообразно использовать функциональные возможности динамически исполняемой библиотеки MFC в среде разработки Microsoft Visual Studio 6. Библиотека имеет собственную иерархическую организацию программных компонент, позволяющих создавать различные визуальные элементы управления.

Таким образом, выполнение технического задания требует программной реализации приложения с визуальным интерфейсом для построения функций принадлежности по исходным данным.

2. АНАЛИЗ ТЕХНИЧЕСКИХ РЕШЕНИЙ

2.1 Библиотека MFC

Система Microsoft Windows была разработана до того времени, когда идея объектно-ориентированного программирования нашла свое отражение в языке C++. Приложения на языке С реализовывались с применением функций программного интерфейса, называемых иногда функциями API (Application Programming Interface). Однако идеи объектно-ориентированного программирования требуют и наличия средств, позволяющих, с одной стороны, программировать в терминах классов, а с другой – сохранить возможность использования в приложениях функций API. Именно такой объектно-ориентированный интерфейс для Windows обеспечивает библиотека классов MFC (Microsoft Foundation Classes), входящая в состав пакета Visual C++.

Эта библиотека классов позволяет:

а) значительно сократить усилия по написанию программного кода приложений Windows;

б) уменьшить размер программного кода;

в) обрабатывать сообщения непосредственно методами класса без программирования цикла обработки сообщений;

г) выполнять непосредственный вызов любой функции Windows С;

д) легко преобразовывать Си-приложения в приложения на языке C++;

е) использовать все функции Windows API;

ж) легче адаптировать приложения к различным платформам, использовать как статически, так и динамически подключаемые библиотеки MFC;

з) значительно упростить применение таких возможностей, как элементы управления OLE, работа с базами данных, средства печати, управление наборами инструментария;

и) более эффективно использовать объектную ориентированность языка C++.

Рисунок 2.1 – Иерархия классов в библиотеке MFC

Следует отметить, что MFC инкапсулирует функции API в форме C++. Эта библиотека классов позволяет работать в терминах различных элементов Windows, таких, как окна, диалоги, элементы управления, а также в терминах графического интерфейса: контекст устройства, кисть и перо. Библиотека MFC создана как иерархический набор классов, позволяющих реализовывать Windows-приложения различных типов: диалоги, приложения с SDI или MDI интерфейсом, приложения, поддерживающие работу с базами данных, OLE-приложения. Базовым классом большинства классов библиотеки является класс CObject. В этом классе инкапсулированы общие методы работы с объектами: использование дампа объектов класса при отладке приложения, доступ к информации о классе объекта времени выполнения, сохранение и восстановление объектов класса. Большую часть библиотеки составляют классы, наследуемые от CObject и реализующие архитектуру приложения (рисунок 2.1)[1]: CWinThread, CWinApp, CDoc-Template, CDocument, CFrameWnd, CView и др.

2.2 Нечеткая логика ‑ математические основы

Нечеткое множество ‑ это пара (A, m), где A ‑ имя нечеткого множества, например: БОЛЬШОЙ, МОЛОДОЙ, ОТРИЦАТЕЛЬНО МАЛЫЙ, а m ‑ функция m:X-->L, называемая функцией принадлежности и обозначаемая обычно греческой буквой . Часто полагается L = [0,1], а в качестве X используется некоторое множество вещественных чисел. m(x) интерпретируется как степень принадлежности элемента x из X нечеткому множеству A.

Характеристикой нечеткого множества выступает функция принадлежности (Membership Function)[4]. Обозначим через MFc(x) – степень принадлежности к нечеткому множеству C, представляющей собой обобщение понятия характеристической функции обычного множества. Тогда нечетким множеством С называется множество упорядоченных пар вида C={MFc(x)/x}, MFc(x) [0,1]. Значение MFc(x)=0 означает отсутствие принадлежности к множеству, 1 – полную принадлежность.

Проиллюстрируем это на простом примере. Формализуем неточное определение 'горячий чай'. В качестве x (область рассуждений) будет выступать шкала температуры в градусах Цельсия. Очевидно, что она будет изменяется от 0 до 100 градусов. Нечеткое множество для понятия 'горячий чай' может выглядеть следующим образом:

C={0/0; 0/10; 0/20; 0,15/30; 0,30/40; 0,60/50; 0,80/60; 0,90/70; 1/80; 1/90; 1/100}.

Так, чай с температурой 60 С принадлежит к множеству 'Горячий' со степенью принадлежности 0,80. Для одного человека чай при температуре 60 С может оказаться горячим, для другого – не слишком горячим. Именно в этом и проявляется нечеткость задания соответствующего множества.

Для нечетких множеств, как и для обычных, определены основные логические операции[5]. Самыми основными, необходимыми для расчетов, являются пересечение и объединение.

Пересечение двух нечетких множеств (нечеткое "И"): AB: MFAB(x)=min(MFA(x), MFB(x)).

Объединение двух нечетких множеств (нечеткое "ИЛИ"): AB: MFAB(x)=max(MFA(x), MFB(x)).

В теории нечетких множеств разработан общий подход к выполнению операторов пересечения, объединения и дополнения, реализованный в так называемых треугольных нормах и конормах. Приведенные выше реализации операций пересечения и объединения – наиболее распространенные случаи t-нормы и t-конормы.

Для описания нечетких множеств вводятся понятия нечеткой и лингвистической переменных.[4]

Нечеткая переменная описывается набором (N,X,A), где N – это название переменной, X – универсальное множество (область рассуждений), A – нечеткое множество на X.

Значениями лингвистической переменной могут быть нечеткие переменные, т.е. лингвистическая переменная находится на более высоком уровне, чем нечеткая переменная. Каждая лингвистическая переменная состоит из:

- названия;

- множества своих значений, которое также называется базовым терм-множеством T. Элементы базового терм-множества представляют собой названия нечетких переменных;

- универсального множества X;

- синтаксического правила G, по которому генерируются новые термы с применением слов естественного или формального языка;

- семантического правила P, которое каждому значению лингвистической переменной ставит в соответствие нечеткое подмножество множества X.

Рассмотрим такое нечеткое понятие как 'Цена акции'. Это и есть название лингвистической переменной. Сформируем для нее базовое терм-множество, которое будет состоять из трех нечетких переменных: 'Низкая', 'Умеренная', 'Высокая' и зададим область рассуждений в виде X=[100;200] (единиц). Последнее, что осталось сделать – построить функции принадлежности для каждого лингвистического терма из базового терм-множества T.

Существует свыше десятка типовых форм кривых для задания функций принадлежности.[2] Наибольшее распространение получили: треугольная, трапецеидальная и гауссовская функции принадлежности.

Треугольная функция (рисунок 2.2) принадлежности определяется тройкой чисел (a,b,c), и ее значение в точке x вычисляется согласно выражению:

(2.1)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее