Untitled2 (Лекции по аналитической геометрии 1 семестр), страница 4

2013-08-16СтудИзба

Описание файла

Файл "Untitled2" внутри архива находится в папке "лекции". Документ из архива "Лекции по аналитической геометрии 1 семестр", который расположен в категории "". Всё это находится в предмете "линейная алгебра и аналитическая геометрия" из 1 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. .

Онлайн просмотр документа "Untitled2"

Текст 4 страницы из документа "Untitled2"

§8. Эллипс.

Определение. Эллипсом называется геометрическое место точек плоскости, сумма расстояний от каждой из которых до двух фиксированных точек плоскости, называемых фокусами эллипса, есть величина постоянная.

Для вывода уравнения эллипса выберем фокусы в точках F1(-c,0) и F2(c,0) (c > 0) , а сумму расстояний обозначим через 2а (2a >2 c). Пусть М(х,у) – произвольная точка эллипса. Тогда:

y

b М

a F1 F2 a x Обозначив a2c2 = b2 , окончательно

b получим:

рис.5

Числа a и b называются полуосями эллипса (точки пересечения эллипса с осями координат имеют своими координатами числа а и b (рис.5)).

Отношение расстояния между фокусами эллипса к длине большой оси называется эксцентриситетом эллипса: Эксцентриситет характеризует форму

эллипса. При ε = 0 эллипс превращается в окружность, при ε = 1 − вырождается в отрезок.

Написанное выше уравнение называется каноническим уравнением эллипса. (Вообще, в геометрии словами каноническое уравнение, обычно, называют уравнение, содержащее в явном виде все основные геометрические характеристики объекта. См. например, каноническое уравнение прямой (§4))

Это уравнение является частным случаем уравнения 2 – го порядка (§6). Нетрудно видеть,

что любое уравнение представляет собой эллипс при условии

AC > 0. (Более общие условия будут выведены позже)

Пример. − эллипс

с центром в т.(−1,2) и полуосями 2 и 4. F1(−1, ) и F2(−1, ).

Замечания. 1) Фокусы эллипса всегда расположены на больших полуосях .

2) Если правая часть = 0, то вырожденный эллипс (точка), если = −1 – мнимый эллипс.

§9. Гипербола.

Определение. Гиперболой называется геометрическое место точек плоскости, разность расстояний от каждой из которых до двух фиксированных точек плоскости, называемых фокусами гиперболы, есть величина постоянная и не равная нулю.

Снова выберем фокусы в точках F1(-c,0) и F2(c,0) (c > 0) , а модуль разности расстояний обозначим через 2а (2a < 2 c). Для произвольной точки гиперболы М(х,у) имеем:

После проведения элементарных преобразований, аналогичных предыдущим, получим

каноническое уравнение гиперболы:

y Из уравнения сразу следует, что

b При гипербола имеет асимптоты .

а F2 x Эксцентриситет гиперболы определяется так же, как и

у эллипса, и равен

рис.6

Замечания. 1) При исследовании уравнения 2 – го порядка могут быть получены уравнения

следующего вида: Центр таких гипербол находится в точке (х0,у0), а

−1 в правой части означает, что гипербола повернута вокруг начала координат на 900 .

  1. Уравнение описывает две пересекающиеся прямые.

  2. «Школьное» уравнение гиперболы представляет собой частный случай, когда ось

гиперболы повернута на 450, а асимптотами являются координатные оси.

Пример. Определить вид и характеристики кривой:

§10. Парабола.

Определение. Параболой называется геометрическое место точек плоскости, расстояние от каждой из которых до фиксированной точки плоскости, называемой фокусом параболы, равно расстоянию до фиксированной прямой, называемой директрисой параболы.

у Пусть фокус имеет координаты (p/2,0): F(p/2,0), а директриса

записывается уравнением х = −р/2. Расстояние между фокусом

M(x,y) и директрисой равно р − параметру параболы (рис.7).

Точки параболы удовлетворяют уравнению:

р/2 F х

После простых преобразований получим каноническое уравнение

параболы: у2 = 2рх.

Рис.7

§11. Кривые второго порядка – заключение.

В предыдущих параграфах были рассмотрены три вида кривых второго порядка: эллипсы,

гиперболы и параболы, а также их частные и вырожденные случаи. Два первых вида называют

центральными кривыми. Параболы – не центральные. Можно доказать (это будет сделано

позже), что этими тремя видами исчерпываются все кривые второго порядка. Из примера §8 видно, что слагаемые 1 – ой степени в уравнении кривой (§6) влияют только на параллельный перенос кривых. В дальнейшем будет доказано, что слагаемое 2Вху определяет поворот

кривой вокруг начала координат.

§12. Аналитическая геометрия в пространстве.

Поверхности в пространстве задаются либо уравнением с тремя переменными:

либо в параметрической форме:

Линии в пространстве задаются пересечением двух поверхностей, или параметрически:

т.е.

При решении задач в пространстве особенно важно знать геометрический смысл параметров, входящих в уравнения.

§13. Плоскость в пространстве.

Определение. Плоскостью называется геометрическое место концов векторов, имеющих общее начало и ортогональных данному ненулевому вектору, называемому нормальным вектором плоскости.

Для вывода уравнения плоскости Р зафиксируем т. и нормальный вектор

(рис.8).Тогда . Отсюда получаем:

− уравнение плоскости, проходящей через

т. и ортогональной вектору .

Если раскрыть скобки и обозначить , то получим общее уравнение плоскости:

Замечание. И в общем уравнение плоскости коэффициенты А, В и С являются координатами

вектора нормали.

§14. Специальные случаи уравнения плоскости.

  1. Уравнение плоскости, проходящей через три точки.

Пусть тт. Необходимым и достаточным условием принадлежности т. М той же плоскости является компланарность векторов В свою очередь, условие компланарности (гл.I,§11,св.2) приводит к следующему уравнению:

  1. Уравнение плоскости в отрезках.

Возьмем в качестве предыдущих точек точки пересечения с осями координат:

z

c Уравнение плоскости примет вид:

М0

b y

a

х рис.8

§15. Основные задачи, связанные с плоскостью.

  1. Условия параллельности, перпендикулярности, угол между плоскостями.

Даны две плоскости:

Все перечисленные условия следуют из геометрического смысла коэффициентов (§13).

  1. Расстояние от точки до плоскости.

Вычисляется так же, как в случае прямой на плоскости (§5). Пусть произвольная точка пространства. Расстояние от точки до плоскости равно модулю проекции

После простых преобразований получим

(#) III. Связка и пучок плоскостей.

Определение1. Множество плоскостей, проходящих через единственную общую точку М0 , называется связкой плоскостей с центром в т. М0 ( Обозначение − S(M0)).

Рассмотрим три плоскости, принадлежащие S(M0):

……………………..(*)

Теорема. Уравнение описывает связку плоскостей с центром в данной точке.

{Нужно доказать 2 утверждения: 1) 2) .

  1. Так как все слагаемые Q равны нулю в т. М0 , то и Q = 0 в этой точке.

  2. Так как СЛАУ (*) имеет единственное решение (x0,y0,z0), то из правила Крамера следует,

что определитель системы отличен от нуля, т.е. векторы линейно независимы и

. Значение D = D* , т.к. все плоскости проходят через т. М0 }

Определение2. . Множество плоскостей, проходящих через общую прямую – ось плоскостей,

называется пучком плоскостей.

Теорема. Уравнение пучка плоскостей имеет вид:

, при условии

§16. Прямая в пространстве.

Наиболее простым заданием прямой в пространстве является ее задание, как линии пересечения двух плоскостей: .

(Естественно предполагать, что плоскости не совпадают и не параллельны)

Однако, такое задание имеет большой недостаток: оно не содержит в явном виде ни одной геометрической характеристики прямой. Удобнее пользоваться каноническим уравнением прямой, в котором она определяется как геометрическое место концов векторов, имеющих общее начало и коллинеарных данному ненулевому вектору − направляющему вектору прямой.

Если обозначить любую фиксированную точку прямой через М0 , а направляющий вектор , то для произвольной точки прямой М получим соотношение:

каноническое уравнение прямой в пространстве. (См. §4,п.III)

Замечание. На самом деле, каноническое уравнение представляет собой систему двух линейных уравнений с тремя переменными, т.е. линию пересечения двух плоскостей. Но, во – первых, это

особые плоскости (параллельные координатным осям) и, во – вторых, в записи системы геометрические характеристики прямой фигурируют в явном виде.

Пример. Перейти к каноническому заданию:

{Положим z = 0. Тогда x =2, y = − 1; . Отсюда: }

От канонического уравнения легко перейти к параметрическому заданию. Приравняем полученную пропорцию к новой переменной и выразим через нее переменные x, y и z:

Пример. Найти точку пересечения прямой с плоскостью xy +2z – 11 = 0.

{x = 1 + 2t, y = −3t, z = −2 + t → 7t − 14 = 0 → t = 2 → (5, −6, 0) }

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5366
Авторов
на СтудИзбе
412
Средний доход
с одного платного файла
Обучение Подробнее