Untitled2 (506257), страница 2

Файл №506257 Untitled2 (Лекции по аналитической геометрии 1 семестр) 2 страницаUntitled2 (506257) страница 22013-08-16СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Определение 1. Базисом векторного пространства L называется система элементов ,

удовлетворяющая двум условиям:

1) система {e1,…,en} линейно независима.

2) Любой вектор L линейно выражается через базисные (т.е. является линейной комбинацией элементов е1, е2, … , еn): .

Примеры. Базис на плоскости (V2 – 2 неколлинеарных вектора), в пространстве (V3 – 3 некомпланарных вектора), в пространстве многочленов степени ≤ n : (1,х,х2,…,хn).

Теорема 1. Коэффициенты разложения по базису – единственны.

{Пусть }

Определение 2. Координатами вектора в некотором базисе называются коэффициенты разложения по этому базису: а = ( ) или .

Замечания. 1. В силу Т.1 данное определение – корректно.

  1. В качестве стандарта можно рассматривать как векторы – строки , так и векторы – столбцы.

  2. Координаты базисных векторов е1,е2,е3 (в пространстве) в собственном базисе равны:

е1 = (1,0,0), е2 = (0,1,0), е3 = (0,0,1).

Определение 3. Размерностью векторного пространства L (обозначается dimL) называется максимальное число линейно независимых векторов этого пространства.

Если такого числа не существует – пространство называется бесконечномерным.

Теорема 2. Размерность линейного пространства равна числу базисных векторов. {б/д}

Отсюда, в частности, следует, что все базисы одного пространства состоят из одинакового числа векторов.

Примеры. V2 ; V3 ; Rn; C[a,b].

Результаты линейных операций легко вычисляются в координатной форме.

Теорема 3. При сложении векторов их соответствующие координаты складываются:

.

{ }

Теорема 4. При умножении вектора на число его координаты умножаются на это число:

λа = (λα1,…,λαn). {д – во аналогично}

В заключение рассмотрим пример базиса, который используется наиболее часто.

Определение 4. Ортонормированным базисом в пространстве называется базис, состоящий из трех взаимно ортогональных векторов единичной длины (на плоскости – из двух).

Эти векторы обозначают буквами i, j и k и называют

базисными ортами. Таким образом, выполняются соотношения

а a3k , а произвольный вектор а

k a2 j может быть представлен в следующем виде (рис.10):

j a = a1 i + a2 j + a3 k = ( a1, a2, a3 ).

a1i i

рис.10

§6. Скалярное произведение.

Определение 1. Скалярным произведением двух векторов называется число, равное

произведению их модулей (длин) на косинус угла между ними:

Из §3 сразу следует, что скалярное произведение может быть записано в виде:

Свойства скалярного произведения.

1. (a,b) = (b,a) {Следует из коммутативности произведения чисел и четности косинуса}

2. .

3. (а , b + c) = (a , b) + (a , c) .

{Два последних свойства следуют из соответствующих свойств проекций (§3) }

4. {Очевидно}

Скалярное произведение вектора на себя называют скалярным квадратом вектора. Последнее свойство утверждает, что скалярный квадрат вектора равен квадрату его длины.

Следующая теорема имеет принципиальное значение не только для векторного пространства, но и для любого его обобщения.

Теорема (необходимое и достаточное условие ортогональности). Два вектора взаимно ортогональны тогда и только тогда, когда их скалярное произведение равно нулю:

{Н.( )

Д.( ) }

Указанные свойства позволяют легко вычислять скалярные произведения по известным характеристикам векторов.

Пример. Вычислить , если

{ }

В действительности, более существенным является обратное утверждение: зная скалярные произведения, можно находить как длины векторов, так и углы между векторами:

Однако, для того, чтобы пользоваться данными формулами, необходимо уметь вычислять скалярное произведение, зная только координаты векторов.

§7. Скалярное произведение в координатной форме.

Пусть векторы a и b заданы своими координатами в ортонормированном базисе { i, j, k }:

и . Умножая скалярно a на b, получим

Для выбранного базиса выполняются соотношения: Отсюда

получаем: Скалярное произведение в ортонормированном базисе

равно сумме попарных произведений координат.

Таким образом, имеем:

Пример. Вычислить длины векторов и косинус угла между ними:

{ }

Замечание. В косоугольном базисе формула для выражения скалярного произведения через координаты будет, естественно, отличаться.

§8. Направляющие косинусы вектора.

Рассмотрим еще одну важную характеристику вектора.

Пусть задан ортонормированный базис { i, j, k } и произвольный вектор а .

Определение 1. Направляющими косинусами вектора а в данном базисе называются косинусы

углов между вектором а и базисными ортами: .

Теорема 1. Направляющие косинусы единичного вектора равны его координатам.

{Пусть В координатах: }

Теорема 2. Сумма квадратов направляющих косинусов равна единице:

{Пусть а = (а1,а2,а3). Обозначим Аналогично

}

Пример. Найти направляющие косинусы вектора а = (4, −2, 4).

{ }

§9. Ориентация базиса в пространстве.

Рассмотрим произвольную тройку некомпланарных векторов.

Определение. Упорядоченная тройка некомпланарных векторов называется правой , если

а) кратчайший поворот от первого вектора ко второму, видимый из конца третьего происходит против часовой стрелки (т.е. в положительном направлении), или б) по правилу винта, или

в) по правилу правой руки. В противном случае − левой. И в том и в другом случае тройка называется ориентированной.

Например, на рис.10 базис { i, j, k } − левый, а тройка {a, b, c} на рис.11 – правая.

с Очевидно, что все одинаково ориентированные ортонормированные базисы могут

b быть совмещены друг с другом с помощью параллельного переноса и поворота,

a а противоположно ориентированные − только с точностью до коллинеарности.

Рис.11 Легко проверить, что тройки a b c, c a b и b c a одинаково ориентированы, а

тройки a c b, b a c и c b a им противоположны. Т.е. круговая перестановка векторов не

меняет ориентацию, а не круговая – меняет.

Изменение знака у одного из векторов меняет ориентацию всей тройки.

§10. Векторное произведение.

Определение. Векторным произведением векторов a и b : [a,b] называется вектор,

удовлетворяющий трем условиям:

  1. Векторное произведение ортогонально своим составляющим:

  2. Длина векторного произведения равна произведению длин векторов на синус угла между ними:

  3. Тройка векторов − правая.

Свойства векторного произведения.

Все свойства векторного произведения можно условно разбить на две группы.

  1. Алгебраические свойства.

  1. Антикоммутативность: .{ Первые два условия определения не зависят

от порядка векторов, но тройки a, b, и b, a, ориентированы противоположно (§9)}

2) {Доказать самим}

3) {б/д}

II. Геометрические свойства.

1) − равенство нулю векторного произведения является необходимым и достаточным условием коллинеарности. { Доказать самим }

2) − площадь параллелограмма, построенного на двух векторах равна модулю векторного произведения этих векторов. {Очевидно}

Для вывода координатной формы векторного произведения поступим так же, как и в случае скалярного: .

Здесь уже использованы соотношения: и т.д.

Легко заметить, что формула векторного произведения может быть записана в виде символического определителя: .

Пример. Вычислить SABC , если даны тт. А(1,2,0), В(3,0,−3), С(5,2,6).

{ }

§11. Смешанное произведение трех векторов.

Определение. Смешанным произведением векторов a,b и c называется число, равное

Свойства смешанного произведения.

1. Модуль смешанного произведения равен объему параллелепипеда, построенного на этих

векторах: { Так как

то модуль проекции с на него равен h }

  1. (Н. и д. условие компланарности) Три вектора компланарны т. и т.т., когда их смешанное

произведение равно нулю. {доказательство следует из св – ва 1.}

3. (В правой части равенства сначала, естественно, выполняется векторное

произведение) { доказательство так же следует из св – ва 1}

Из последнего свойства следует, что знаки можно ставить в любом порядке. Поэтому

смешанное произведение обозначают символом abc.

Для записи смешанного произведения в координатах лучше всего использовать форму

Если теперь представить векторное произведение в виде символического определителя и заменить первую строку на строку координат вектора а , то при разложении определителя

Характеристики

Тип файла
Документ
Размер
905,5 Kb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее