Untitled2 (Лекции по аналитической геометрии 1 семестр)

2013-08-16СтудИзба

Описание файла

Файл "Untitled2" внутри архива находится в папке "лекции". Документ из архива "Лекции по аналитической геометрии 1 семестр", который расположен в категории "". Всё это находится в предмете "линейная алгебра и аналитическая геометрия" из 1 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "аналитическая геометрия" в общих файлах.

Онлайн просмотр документа "Untitled2"

Текст из документа "Untitled2"

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Глава I. Векторная алгебра.

§1. Векторы в пространстве. Основные определения.

Определение 1. Вектором в пространстве называется направленный отрезок.

Таким образом, векторы в отличие от скалярных величин имеют две характеристики: длину и направление. Будем обозначать векторы символами , или а.

(Здесь А и В – начало и конец данного вектора (рис.1)) а В

Длина вектора обозначается символом модуля: . А рис.1

Различают три вида векторов, задаваемых отношением равенства между ними:

  1. Закрепленные векторы называются равными, если у них совпадают начала и концы соответственно. Примером такого вектора является вектор силы.

  2. Скользящие векторы называются равными, если они расположены на одной прямой, имеют одинаковые длины и направления. Примером таких векторов является вектор скорости.

  3. Свободные или геометрические векторы считаются равными, если они могут быть совмещены с помощью параллельного переноса.

В курсе аналитической геометрии рассматриваются только свободные векторы.

Определение 2. Вектор, длина которого равна нулю, называется нулевым вектором, или ноль –

вектором.

Очевидно, начало и конец нулевого вектора совпадают. Нулевой вектор не имеет определенного направления или имеет любое направление.

Определение 3. Два вектора, лежащих на одной прямой или параллельных прямых называются

коллинеарными (рис.2). Обозначают: . a

b

Нулевой вектор можно считать коллинеарным любому. рис.2

Определение 4. Два коллинеарных и одинаково направленных вектора называются

сонаправленными. Обозначают: .

Теперь можно дать строгое определение равенства свободных векторов:

Определение 5. Два свободных вектора называются равными, если они сонаправлены и имеют

одинаковую длину.

Определение 6. Три вектора, лежащих в одной или параллельных плоскостях называются

компланарными.

Два перпендикулярных вектора называют взаимно ортогональными: .

Нулевой вектор можно считать ортогональным любому.

Определение 7. Вектор единичной длины называется единичным вектором или ортом.

Орт, сонаправленный ненулевому вектору а называют ортом вектора а : ea .

§2. Линейные операции над векторами.

На множестве векторов определены линейные операции: сложение векторов и умножение вектора на число.

I. Сложение векторов.

Суммой 2 – х векторов называется вектор, начало которого совпадает с началом первого, а конец с концом второго, при условии, что начало второго совпадает с концом первого.

Л егко видеть, что сумма двух векторов, определенная

таким образом (рис.3а), совпадает с суммой векторов,

построенной по правилу параллелограмма (рис.6). b

Однако, данное правило позволяет строить a

сумму любого числа векторов (рис.3б).

a+b

рис.3а

a

b a+b+c

рис.3б c

I I. Умножение вектора на число.

Произведением вектора а на число называется вектор, a

длина которого равна , сонаправленный вектору а при λ > 0 -0.7a

и противоположно направленный при λ < 0. рис.4

Вычитание векторов определяется как действие обратное сложению:

Определение. Разностью векторов а и b называется такой вектор c = ab, который при сложении с вектором b дает вектор a : b + c = a (рис.5).

Из рис.5 следует, что строить вектор разности удобнее, поместив

b ab начала векторов a и b в общую точку.

Очевидно следующее равенство: a + (−1)a = a a = 0.

a (Строгое доказательство предоставляется читателям)

рис.5

Замечание. Ноль в правой части последнего равенства есть нулевой вектор, а не число.

Равенство (−1)b = −b дает еще один способ построения разности векторов: а−b = a+(−b). Т.е. при вычислении разности можно у вычитаемого вектора изменить направление на противоположное и построить сумму полученных векторов.

Свойства линейных операций.

  1. Переместительное свойство сложения (коммутативность).

a + b = b + a. {рис.6}

  1. Сочетательное свойство сложения (ассоциативность).

(a + b) + c = a + (b + c). {рис.7}

3. Дистрибутивность умножения

а) (λ+μ)а = λа + μа. {Очевидно}

б) λ(a+b) = λa + λb. {Следует из подобия (рис.8)}

4. λ(μа) = (λμ)а . {Очевидно }


c

b b

a+b = b+a b+c λb λ(a+b)

a+b b

a (a+b)+c=a+(b+c) a+b

a a λa

рис.6 рис.7 рис.8

§3. Проекция вектора на ось.

Определение 1. Осью называется прямая, на которой задано положительное направление.

Числовой осью называют ось, на которой заданы начало отсчета и масштаб (единичный отрезок).

Все точки числовой оси находятся во взаимно – однозначном соответствии с множеством действительных чисел. Началу отсчета, естественно, ставится в соответствие число 0.

Соответствующие точкам числа являются координатами точек относительно этой числовой оси.

Рассматривая некоторую ось u (не числовую), будем предполагать (по умолчанию) наличие единого масштаба во всем пространстве, содержащем эту ось.

Определение 2. Величиной отрезка [АВ] (обозначается АВ) называется число, равное длине этого отрезка и взятое со знаком «+», если направлен по оси и со знаком «−», если − против, т.е. .

А' В' и

рис.9

Основные свойства величин отрезков (будем считать, что тт. А, В и С лежат на оси и ):

  1. АВ = −ВА {Очевидно}

{При расположении точек в указанном порядке по направлению оси − равенство очевидно.

Пусть точки расположены иначе, например: В, С, АВА = ВС + СА

АВ = ВС АС АС = АВ + ВС. Остальные случаи доказываются аналогично}

  1. Пусть и – числовая ось, а Аи и Ви − координаты точек А и В на этой оси. Тогда

АВ = ВиАи . {Очевидно}

Рассмотрим теперь произвольный вектор и ось u (рис.9).

Определение 3. Ортогональной проекцией вектора на ось и называется величина отрезка А'В', где А' и В' − ортогональные проекции точек А и В на эту ось (рис.9).

При = А'В' .

Из определения сразу следует, что проекция вектора на ось есть число.

Если начало вектора поместить на ось и угол между вектором и осью обозначить через φ, то для вычисления проекции имеем очевидное соотношение: При = При этом необходимо учитывать, что угол φ отсчитывается от оси в положительном направлении, т.е. против часовой стрелки. Если еи орт, сонаправленный оси и, то в частном случае .

Замечание. Можно рассматривать и не ортогональные проекции вектора на ось. Для этого следует провести из концов вектора параллельные прямые, не перпендикулярные оси до пересечения с ней. Все основные свойства ортогональных проекций будут выполняться. Однако, в дальнейшем, по умолчанию, все проекции мы будем считать ортогональными.

Линейные свойства проекций.

I. Проекция произведения вектора на число равна произведению числа на проекцию этого вектора:

{Доказательство следует из подобия. Необходимо рассмотреть 2 случая: λ > 0 и λ < 0}

II. Проекция суммы векторов сумме проекций этих векторов:

{Для доказательства следует использовать св.2 величин отрезков}

Определение 3. Линейной комбинацией векторов а1,…,ап называется сумма следующего вида: , где все коэффициенты линейной комбинации.

(В общем случае, аi − элементы некоторого множества, которые можно складывать и умножать на действительные числа)

Используя понятие линейной комбинации, можно оба линейных свойства проекций записать одной формулой: : проекция линейной комбинации векторов равна линейной комбинации проекций.

§4. Линейно зависимые и линейно независимые системы векторов.

Определение 1. Система векторов {a1,…,an} называется линейно зависимой, если найдутся коэффициенты λ1,…,λn не все равные нулю, линейная комбинация с которыми равна нулю, т.е.

Определение 2. Система векторов {a1,…,an} называется линейно независимой, если ее линейная

комбинация равна нулю только с нулевыми коэффициентами: .

Имеют место несколько простых утверждений.

Теорема 1 (необходимое и достаточное условие линейной зависимости). Векторы а1,…,an – линейно зависимы когда хотя бы один из них является линейной комбинацией остальных.

{1.(необходимость: {ak} – л.з. ): Пусть, для определенности,

, т.е. а1 − линейная комбинация остальных.

2.(достаточность: am – л.к.): система лин. зав.}

Теорема 2. Если один из векторов системы равен нулю, то вся система линейно зависима.

{0a1 + … + 0an-1 + }

Теорема 3. Если подсистема линейно зависима, то и вся система линейно зависима.

{ }

Примеры.

1) . 2) они компланарны.

Отсюда следует, что три вектора на плоскости всегда линейно зависимы.

3) Четыре вектора в пространстве всегда линейно зависимы.

4) {f1 = 1, f2 = x, f3 = x2 } – линейно независимы.

5) {sin2x, cos2x, 1} − линейно зависимы.

§5. Базис. Координаты. Размерность.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5285
Авторов
на СтудИзбе
418
Средний доход
с одного платного файла
Обучение Подробнее