Untitled2 (506257)
Текст из файла
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ
Глава I. Векторная алгебра.
§1. Векторы в пространстве. Основные определения.
Определение 1. Вектором в пространстве называется направленный отрезок.
Таким образом, векторы в отличие от скалярных величин имеют две характеристики: длину и направление. Будем обозначать векторы символами , или а.
(Здесь А и В – начало и конец данного вектора (рис.1)) а В
Длина вектора обозначается символом модуля: . А рис.1
Различают три вида векторов, задаваемых отношением равенства между ними:
-
Закрепленные векторы называются равными, если у них совпадают начала и концы соответственно. Примером такого вектора является вектор силы.
-
Скользящие векторы называются равными, если они расположены на одной прямой, имеют одинаковые длины и направления. Примером таких векторов является вектор скорости.
-
Свободные или геометрические векторы считаются равными, если они могут быть совмещены с помощью параллельного переноса.
В курсе аналитической геометрии рассматриваются только свободные векторы.
Определение 2. Вектор, длина которого равна нулю, называется нулевым вектором, или ноль –
вектором.
Очевидно, начало и конец нулевого вектора совпадают. Нулевой вектор не имеет определенного направления или имеет любое направление.
Определение 3. Два вектора, лежащих на одной прямой или параллельных прямых называются
коллинеарными (рис.2). Обозначают:
. a
b
Нулевой вектор можно считать коллинеарным любому. рис.2
Определение 4. Два коллинеарных и одинаково направленных вектора называются
сонаправленными. Обозначают: .
Теперь можно дать строгое определение равенства свободных векторов:
Определение 5. Два свободных вектора называются равными, если они сонаправлены и имеют
одинаковую длину.
Определение 6. Три вектора, лежащих в одной или параллельных плоскостях называются
компланарными.
Два перпендикулярных вектора называют взаимно ортогональными: .
Нулевой вектор можно считать ортогональным любому.
Определение 7. Вектор единичной длины называется единичным вектором или ортом.
Орт, сонаправленный ненулевому вектору а называют ортом вектора а : ea .
§2. Линейные операции над векторами.
На множестве векторов определены линейные операции: сложение векторов и умножение вектора на число.
I. Сложение векторов.
Суммой 2 – х векторов называется вектор, начало которого совпадает с началом первого, а конец с концом второго, при условии, что начало второго совпадает с концом первого.
Л егко видеть, что сумма двух векторов, определенная
таким образом (рис.3а), совпадает с суммой векторов,
построенной по правилу параллелограмма (рис.6). b
Однако, данное правило позволяет строить a
сумму любого числа векторов (рис.3б).
a+b
рис.3а
a
b a+b+c
рис.3б c
I I. Умножение вектора на число.
Произведением вектора а на число называется вектор, a
длина которого равна , сонаправленный вектору а при λ > 0 -0.7a
и противоположно направленный при λ < 0. рис.4
Вычитание векторов определяется как действие обратное сложению:
Определение. Разностью векторов а и b называется такой вектор c = a − b, который при сложении с вектором b дает вектор a : b + c = a (рис.5).
Из рис.5 следует, что строить вектор разности удобнее, поместив
b a−b начала векторов a и b в общую точку.
Очевидно следующее равенство: a + (−1)a = a − a = 0.
a (Строгое доказательство предоставляется читателям)
рис.5
Замечание. Ноль в правой части последнего равенства есть нулевой вектор, а не число.
Равенство (−1)b = −b дает еще один способ построения разности векторов: а−b = a+(−b). Т.е. при вычислении разности можно у вычитаемого вектора изменить направление на противоположное и построить сумму полученных векторов.
Свойства линейных операций.
-
Переместительное свойство сложения (коммутативность).
a + b = b + a. {рис.6}
-
Сочетательное свойство сложения (ассоциативность).
(a + b) + c = a + (b + c). {рис.7}
3. Дистрибутивность умножения
а) (λ+μ)а = λа + μа. {Очевидно}
б) λ(a+b) = λa + λb. {Следует из подобия (рис.8)}
4. λ(μа) = (λμ)а . {Очевидно }
c
b b
a+b = b+a b+c λb λ(a+b)
a+b b
a (a+b)+c=a+(b+c) a+b
a a λa
рис.6 рис.7 рис.8
§3. Проекция вектора на ось.
Определение 1. Осью называется прямая, на которой задано положительное направление.
Числовой осью называют ось, на которой заданы начало отсчета и масштаб (единичный отрезок).
Все точки числовой оси находятся во взаимно – однозначном соответствии с множеством действительных чисел. Началу отсчета, естественно, ставится в соответствие число 0.
Соответствующие точкам числа являются координатами точек относительно этой числовой оси.
Рассматривая некоторую ось u (не числовую), будем предполагать (по умолчанию) наличие единого масштаба во всем пространстве, содержащем эту ось.
Определение 2. Величиной отрезка [АВ]
(обозначается АВ) называется число, равное длине этого отрезка и взятое со знаком «+», если
направлен по оси и со знаком «−», если − против, т.е.
.
А' В' и
рис.9
Основные свойства величин отрезков (будем считать, что тт. А, В и С лежат на оси и ):
{При расположении точек в указанном порядке по направлению оси − равенство очевидно.
Пусть точки расположены иначе, например: В, С, А → ВА = ВС + СА →
−АВ = ВС −АС → АС = АВ + ВС. Остальные случаи доказываются аналогично}
-
Пусть и – числовая ось, а Аи и Ви − координаты точек А и В на этой оси. Тогда
АВ = Ви − Аи . {Очевидно}
Рассмотрим теперь произвольный вектор и ось u (рис.9).
Определение 3. Ортогональной проекцией вектора на ось и называется величина отрезка А'В', где А' и В' − ортогональные проекции точек А и В на эту ось (рис.9).
Из определения сразу следует, что проекция вектора на ось есть число.
Если начало вектора поместить на ось и угол между вектором и осью обозначить через φ, то для вычисления проекции имеем очевидное соотношение: При =
При этом необходимо учитывать, что угол φ отсчитывается от оси в положительном направлении, т.е. против часовой стрелки. Если еи − орт, сонаправленный оси и, то в частном случае
.
Замечание. Можно рассматривать и не ортогональные проекции вектора на ось. Для этого следует провести из концов вектора параллельные прямые, не перпендикулярные оси до пересечения с ней. Все основные свойства ортогональных проекций будут выполняться. Однако, в дальнейшем, по умолчанию, все проекции мы будем считать ортогональными.
Линейные свойства проекций.
I. Проекция произведения вектора на число равна произведению числа на проекцию этого вектора:
{Доказательство следует из подобия. Необходимо рассмотреть 2 случая: λ > 0 и λ < 0}
II. Проекция суммы векторов сумме проекций этих векторов:
{Для доказательства следует использовать св.2 величин отрезков}
Определение 3. Линейной комбинацией векторов а1,…,ап называется сумма следующего вида: , где все
коэффициенты линейной комбинации.
(В общем случае, аi − элементы некоторого множества, которые можно складывать и умножать на действительные числа)
Используя понятие линейной комбинации, можно оба линейных свойства проекций записать одной формулой: : проекция линейной комбинации векторов равна линейной комбинации проекций.
§4. Линейно зависимые и линейно независимые системы векторов.
Определение 1. Система векторов {a1,…,an} называется линейно зависимой, если найдутся коэффициенты λ1,…,λn не все равные нулю, линейная комбинация с которыми равна нулю, т.е.
Определение 2. Система векторов {a1,…,an} называется линейно независимой, если ее линейная
комбинация равна нулю только с нулевыми коэффициентами: .
Имеют место несколько простых утверждений.
Теорема 1 (необходимое и достаточное условие линейной зависимости). Векторы а1,…,an – линейно зависимы когда хотя бы один из них является линейной комбинацией остальных.
{1.(необходимость: {ak} – л.з. ): Пусть, для определенности,
, т.е. а1 − линейная комбинация остальных.
2.(достаточность: am – л.к.): система лин. зав.}
Теорема 2. Если один из векторов системы равен нулю, то вся система линейно зависима.
Теорема 3. Если подсистема линейно зависима, то и вся система линейно зависима.
Примеры.
Отсюда следует, что три вектора на плоскости всегда линейно зависимы.
3) Четыре вектора в пространстве всегда линейно зависимы.
4) {f1 = 1, f2 = x, f3 = x2 } – линейно независимы.
5) {sin2x, cos2x, 1} − линейно зависимы.
§5. Базис. Координаты. Размерность.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.