Билет №7, 11 (Ответы на экзамен 2)

2013-09-12СтудИзба

Описание файла

Файл "Билет №7, 11" внутри архива находится в папке "otvety_v2". Документ из архива "Ответы на экзамен 2", который расположен в категории "". Всё это находится в предмете "материалы и элементы электронной техники" из 5 семестр, которые можно найти в файловом архиве НИУ «МЭИ» . Не смотря на прямую связь этого архива с НИУ «МЭИ» , его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "материалы и элементы электронный техники" в общих файлах.

Онлайн просмотр документа "Билет №7, 11"

Текст из документа "Билет №7, 11"

5


Билет №7, 11

ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ

4.1. ОПРЕДЕЛЕНИЯ И ОСНОВНЫЕ ПОНЯТИЯ

Диэлектрическими потерями Р (Вт) называют ту часть энергии приложенного электрического поля, которая рассеивается в диэлек­трике за единицу времени. Эта энергия переходит в тепло, и диэлек­трик нагревается.

При недопустимо высоких диэлектрических потерях электроизо­ляционная конструкция может нагреться до температуры теплового разрушения, т.е. наступит электротепловой пробой (см. гл. 5.3.1 и 5.4.2).

Диэлектрические потери электроизоляционных материалов и кон­струкций часто характеризуют тангенсом угла диэлектрических по­терь tgδ, где δ— угол, дополняющий до 90° угол сдвига фаз между то­ком и напряжением (угол φ) в емкостной цепи (рис. 4.1):

δ= 90°-φ. (4.1)

Величина tgδ является важной характеристикой диэлектриков. Она определяет диэлектрические потери в материале: чем больше tgδ, тем более высокие (при прочих равных условиях) диэлектриче­ские потери. Для наиболее широко применяемых диэлектриков tgδ имеет значение в пределах от 0,0001 до 0,03. О величине диэлектри­ческих потерь участка изоляции и некоторых радиодеталей (конден­саторов, катушек индуктивности и т.п.) можно судить также по зна­чению их добротности Q:

Q=-1/tgδ = ctgδ = tg φ. (4.2)

Диэлектрические потери могут быть как при постоянном, так и при переменном на­пряжении. При постоянном напряжении потери обусловлены только током сквозной проводимости, и величина диэлектриче­ских потерь в данном случае зависит (об­ратно пропорционально) от значений удельных объемного и поверхностного со­противлений. При переменном напряже­нии диэлектрические потери возникают под действием как тока сквозной проводи­мости, так и релаксационных видов поля­ ризации.

Рис 4.1. Векторная диаграмма диэлектрика с потерями.

В сильных электрических полях (в постоянном и переменном) дополнительно возникают ионизационные потери.

4.2. ЭКВИВАЛЕНТНЫЕ СХЕМЫ ЗАМЕЩЕНИЯ ДИЭЛЕКТРИКА С ПОТЕРЯМИ

Чтобы изучить диэлектрические потери какого-либо материала, необходимо рассмотреть конденсатор с этим материалом в цепи пере­менного напряжения. Конденсатор с исследуемым диэлектриком, имеющий емкость С, рассеиваемую мощность Р и угол сдвига фаз ме­жду током и напряжением φ, заменим эквивалентной схемой, в кото­рой к идеальному конденсатору активное сопротивление подключено либо параллельно — параллельная эквивалентная схема, либо после­довательно — последовательная эквивалентная схема. Эти эквива­лентные схемы замещения диэлектрика с потерями должны быть вы­браны так, чтобы расходуемая в них активная мощность была равна мощности Р, которая рассеивается в конденсаторе с исследуемым ди­электриком, а ток опережал бы напряжение на тот же угол φ. Эквива­лентные схемы вводятся условно и не объясняют механизма диэлек­трических потерь. Величины емкости идеального конденсатора и активного сопротивления для параллельной и последовательной схем замещения обозначим соответственно Ср и R, Cs и r.

Параллельная эквивалентная схема замещения диэлектрика с по­терями и векторная диаграмма токов в ней представлены на рис.4.2, из которого видно, что активная составляющая тока Iа совпадает по фазе с напряжением U, а реактивная составляющая тока Ir опережает напряжение на угол, равный 90°. Значения соответствующих токов равны

I = U/Z, Ia = U/R, Ir = U/Xc = UωCp, (4.3)

где Z — полное сопротивление, Z = (Xc2 + R2) 1/2; Xс — реактивное (емко­стное) сопротивление конденсатора с диэлектриком, Xс = 1/ω Ср (ω — угловая частота).

Из треугольника токов (см. рис. 4.2, б) следует, что

tgδ = Ia/Ic = U/ RUωCp = 1/ωRCp (4.4)

Для параллельной схемы замещения, используя выражение (4.7) и векторную диаграмму токов, изображенную на рис. 4.2, б, получим

P=UIcosφ = UI sin δ = U Ir sinδ / cosδ = UIr, tgδ,


Рис. 4.2. Параллельная эквивалентная схема замещения диэлектрика с потерями (а) и векторная диаграмма токов в ней (б)

где I = Ir /cosδ (см. рис. 4.2, б).

Подставив в это выражение из (4.3) значение тока Ir получим

P = U 2 ω Cp tgδ (4.8)

Для последовательной схемы замещения имеем (без вывода)

P= U2 tgδ /(Xc(1+ tgδ )) P = U2 ωCstgδ /(1+ tg2δ )) (4.9)

Приравняв друг к другу правые части выражений (4.8) и (4.9), (4.4) и (4.5), определим соотношения между Ср и Cs, а также между Rиr:

Cp = Cs/(1+ tg2δ )) (4-10)

R = r(1+ 1/tg2δ )) (4.11)

Для высококачественных диэлектриков значением tg2δ в сравне­нии с единицей можно пренебречь и считать, что Ср ~ Cs ~ С. Тогда величина мощности, рассеиваемой в диэлектрике, будет одинакова для обеих схем и равна

P = U2ωC tgδ (4.12)

где Р — активная мощность, Вт; U — напряжение, приложенное к конденсатору с испытуемым диэлектриком, В; С — его емкость, Ф; ω — угловая частота, с-1 (ω = 2πf , где f - циклическая частота, Гц).

Для диэлектриков с высокими значениями tgδ при переменном напряжении емкость С и, следовательно, диэлектрическая проницае­мость ε становятся величинами неопределенными, зависящими от выбора модели эквивалентной схемы замещения. Величина же tgδ диэлектриков от выбранной схемы замещения не зависит. Она зави­сит от природы материала, частоты f напряжения и температуры Т. Поэтому в справочной литературе для каждого диэлектрика указыва­ются f и Т, при которых измерены tgδ и ε.

Из формулы (4.12) следует, что величина рассеиваемой мощности Р (диэлектрические потери) зависит от квадрата приложенного на­пряжения и его частоты, емкости и tgδ материала. Емкость, в свою очередь, зависит от ε материала, а ε и tgδ — от природы материала (химического состава и структуры) и внешних условий (температу­ры, частоты и величины напряжения, влажности среды и т.п.). Сле­довательно, все перечисленные факторы будут влиять на величину рассеиваемой мощности в диэлектриках. Из формулы (4.12) также видно, что диэлектрические потери могут приобретать существенные и даже опасные значения для диэлектриков, используемых в уста­новках высокого напряжения или высокой частоты и особенно в ус­тановках при одновременном воздействии высокого напряжения и высокой частоты.

Связь ε и tgδ и виды потерь

В электродинамике при описании взаимодействия электромагнит­ного поля с веществом часто используют величину, называемую комп­лексной диэлектрической проницаемостью:

ε = ε ' —jε ". (6.21)

Чтобы уяснить это понятие, воспользуемся одним из фундаменталь­ных уравнений электродинамики (первым уравнением Максвелла), устанавливающим связь между изменениями электрического и магнит­ного полей:

rot Н = J + Jcm = γE + εεoE/∂t (6.22)

Приведенное уравнение подтверждает тот факт, что магнитное поле отлично от нуля как при перемещении электрических зарядов (т. е. при наличии тока сквозной электропроводности через вещество), так и при изменении напряженности электрического поля во времени (т. е. при наличии тока смещения).

В однородных идеальных диэлектриках сквозной ток отсутствует, т. е. γ = 0. Для случая гармонического изменения поля уравнения (6.22) можно записать в комплексной форме:

rot H = j ω εεo E (6.23) (курсив –комплексная величина)

Если же имеем дело с несовершенным диэлектриком, обладающим заметными диэлектрическими потерями, то уравнение полного тока приобретает более сложный вид:

rot H = ( γf + j ω εεo ) E, (6.24)

где γf — полная удельная активная проводимость на данной частоте, учитывающая как сквозную электропроводность, так и активные сос­тавляющие поляризационных токов.

Задачу о распространении электромагнитного поля в частично про­водящей среде можно свести к случаю идеального диэлектрика, если в уравнение (6.24) ввести комплексную диэлектрическую проницае­мость:

rot H = j ω εo ε E (6.25)

Где ε = ε - j γf / ω εo (6.26)

Из сопоставления (6.21) и (6.26) следует, что действительная сос­тавляющая комплексной диэлектрической проницаемости ε' = ε, а мнимая

ε" = γf / ω εo

Ранее было показано, что tgδ есть отношение активной составляю­щей проводимости к емкостной составляющей (рис. 6.13,а). Поэтому для плоского конденсатора при данной частоте справедливо соотно­шение

tgδ = (γf S/h) / (ω ε εo S/h) = γf / (ω ε εo S/h) = ε" / ε/ (6.27)

Из выражения (4.12) ясно, что диэлектрические потери име­ют важное значение для материалов, используемых в установках вы­сокого напряжения, в высокочастотной аппаратуре и особенно в высо­ковольтных, высокочастотных устройствах, поскольку значение ди­электрических потерь пропорционально квадрату приложенного к диэлектрику напряжения и частоте.

Материалы, предназначенные для применения в указанных усло­виях, должны отличаться малыми значениями угла потерь и диэлект­рической проницаемости, так как в противном случае мощность, рас­сеиваемая в диэлектрике, может достигнуть недопустимо больших значений.

Большие диэлектрические потери в электроизоляционном материа­ле вызывают сильный нагрев изготовленного из него изделия и могут привести к его тепловому разрушению. Если диэлектрик используется в колебательном контуре, то ди­электрические потери препятствуют достижению высокой добротности (острой настройки на резонанс), так как с увеличением эквивалентно­го сопротивления потерь усиливается затухание колебаний в контуре.

2.1.3. Диэлектрическая проницаемость

Относительная диэлектрическая проницаемость, или диэлектри­ческая проницаемость ε, — один из важнейших макроскопических электрических параметров диэлектрика.

Поскольку в диэлектрике невозможно свободное перемещение заряда, в глубь его способны проникать достаточно сильные внешние поля. Существуют по меньшей мере три ситуации, когда нам важно знать, что происходит с внут­ренней (электронной и ионной) структурой диэлектрика, когда на электрическое поле, отвечающее периодическому потенциалу решетки, накладывается некото­рое дополнительное электрическое поле.

  1. Мы можем поместить образец диэлектрика в статическое электрическое
    поле, например в поле между пластинами конденсатора. Многие важные резуль­таты возникающих искажений внутренней структуры удается определить, исходя из статической диэлектрической проницаемости εоо« обозначает, что частота поля f=0) кристалла, вычисле­ние которой составляет одну из важных задач микроскопической теории диэлек­триков.

  2. В принципе нас могут интересовать оптические свойства диэлектрика, т. е. его
    реакция на высокочастотные электромагнитные поля, связанные с электромагнитным излучением. В этом случае важно вычислить зависящую от частоты диэлектрическую проницаемость ε(ω) или, что эквивалентно, показатель преломления n = √ ε

3. В ионном кристалле даже в отсутствие приложенных извне полей наряду с периодическим потенциалом решетки могут существовать дальнодействующие электростатические силы между ионами. Такие силы возникают, когда решетка деформирована по отношению к своей равновесной конфигурации (например, если возбуждена нормальная мода колебаний). Для рассмотрения таких сил лучше всего ввести создающее их дополнительное электрическое поле, источники которого являются внутренними по отношению к кристаллу.

При обсуждении всех этих явлений наиболее удобно воспользоваться макроскопическими уравнениями Максвелла в среде. Мы начнем с рассмотрения уравнений электростатики.

Диэлектрическая проницаемость ε количественно характеризует спообность диэлектрика поляризоваться в электрическом поле, а также оценивает степень его полярности; ε является константой диэлектриче­ского материала при данной температуре и частоте электрического на­пряжения и показывает, во сколько раз заряд конденсатора с диэлектри­ком больше заряда конденсатора тех же размеров с вакуумом.

Диэлектрическая проницаемость определяет величину электри­ческой емкости изделия (конденсатора, изоляции кабеля и т.п.). Для плоского конденсатора электрическая емкость С, Ф, выражается формулой

С = εεоS/h, (2.15)

где S — площадь измерительного электрода, м2; h — толщина ди­электрика, м.

Из формулы (2.15) видно, что чем больше величина ε используе­мого диэлектрика, тем больше электрическая емкость конденсатора при тех же габаритах.

В свою очередь, электрическая емкость С является коэффициен­том пропорциональности между поверхностным зарядом Qк, накоп­ленным конденсатором, и приложенным к нему электрическим на­пряжением U:

Qк = CU = Uεоε S / h. (2.16)

Из формулы (2.16) следует, что электрический заряд Qк, накоп­ленный конденсатором, пропорционален величине ε диэлектрика. Зная Qк и геометрические размеры конденсатора, можно определить ε диэлектрического материала для данного напряжения.

Диэлектрическая проницаемость ε — величина безразмерная, и у любого диэлектрика она больше еди­ницы; в случае вакуума ε = 1. Плотность заряда на электродах конденсатора с диэлек­триком в ε раз больше плотности заряда на электродах конденсатора с вакуумом, а напряженности при одинаковых напряжениях для обо­их конденсаторов одинаковы и зависят только от величины напря­жения U и расстояния между электродами (Е = U/h).

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее