2 (Ответики к экзамену), страница 7

2019-05-12СтудИзба

Описание файла

Файл "2" внутри архива находится в папке "Ответики к экзамену". Документ из архива "Ответики к экзамену", который расположен в категории "". Всё это находится в предмете "компьютерные сети" из 6 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Онлайн просмотр документа "2"

Текст 7 страницы из документа "2"

Каналы типа H служат для высокоскоростной передачи данных. Абонент может использовать такой канал как высокоскоростную магистраль, либо разделить ее с помощью метода TDM на подканалы. Обычно канал этого типа используют такие приложения, как факс, видео, высококачественные звуковые устройства.

Эти каналы объединяют в так называемые структуры передачи, или канальные структуры. На сегодня лучше всего определена и часто используется базовая канальная структура (BRI - Basic Rate Interface) или базовый доступ (ВА) и основная канальная структура (или основной доступ (РА)).

На рисунке 2-60 показаны эти структуры. Базовый доступ состоит из двух полнодуплексных В-каналов 64 Кбит/сек. и одного полнодуплексного D-канала 16 Кбит/сек. Базовый доступ обеспечивает максимальную скорость 192 Кбит/сек.

Рисунок 2-60. Структура ISDN-каналов

Основной доступ предназначен для пользователей, которым нужна высокая скорость передачи. Как видно на рисунке, есть несколько вариантов основного доступа: для поддержки стандарта Т1 и для поддержки стандарта Е1. (Эти стандарты мы обсуждали в разделе 2.5.5.3).

ISDN-сети предоставляют четыре вида соединений конечных пользователей:

  • с коммутацией каналов через канал В

  • через канал В

  • с коммутацией пакетов через канал В

  • с коммутацией пакетов через канал D

При установлении соединений с коммутацией пакетов используют как каналы В, так и каналы D. При подключении через канал В пользователи могут использовать любой протокол обмена. Канал D используют для передачи управляющей информации между пользователем и сетью при установлении, разрыве соединения, доступе к сетевым сервисам.

Канал В подключают через устройство NT1 или NT2, используя протоколы физического уровня. Канал D предполагает использование трехуровневого протокола доступа, например, Х.25.

Постоянное соединение может быть предоставлено на неопределенное время, предопределенный период, либо выделенные дни, недели, месяцы. Сетевой интерфейс поддерживает только физический уровень. Управление вызовом не нужно, так как соединение уже предоставлено.

ISDN-сети также должны предоставлять доступ к передаче данных через соединения с коммутацией пакетов. Для этого есть две возможности. Либо это обеспечивает внешняя сеть, называемая сетью передачи данных общего доступа с коммутацией пакетов (Packet-Switched Public Data Network – PSPDN), либо возможность коммутации пакетов интегрируется в ISDN-сеть. В первом случае сервис обеспечивается через В-канал, во втором – либо через В-канал, либо через D-канал. Начнем рассмотрение этих случаев с использования В-канала для доступа к сервису с коммутации пакетов.

Когда сервис с коммутацией пакетов осуществляется с помощью внешней PSPDN-сети, доступ к этому сервису обеспечивается через В-канал. Как пользователь, так и PSPDN-сеть должны в этом случае быть абонентами ISDN-сети. В этом случае один или несколько узлов PSPDN-сети, называемых PH-узлами (Packet Handler), должен быть соединен с ISDN-сетью. Эти узлы можно считать обычными устройствами Х.25 DCE с возможностью подключения к ISDN-сети. В этом случае абонент ISDN-сети – это Х.25 DTE, и ISDN-сеть просто соединяет Х.25 DTE c Х.25 DCE, которое одновременно является узлом PSPDN-сети.

Теперь любой абонент ISDN-сети может обмениваться данными через Х.25 с любым абонентом PSPDN-сети.

16.Передача данных в АТМ сетях.



АТМ - технология с коммутацией пакетов. В области коммутации каналов накоплен огромный опыт, поэтому переход на коммутацию пакетов - это технологический, принципиальный сдвиг. Ясно, что для B-ISDN витая пара – основной вид абонентской линии, скорее всего, не подойдет. Существующие телефонные коммутаторы не годятся и должны быть заменены коммутаторами нового поколения, работающими на иных принципах. Единственное, что, похоже, удастся сохранить - оптоволоконные магистрали.

Виртуальные каналы и коммутация каналов

Передача в ATM-сетях

Как уже было сказано АТМ - это асинхронный способ передачи. В стандарте Т1 данные передаются строго синхронно, так, как показано на рисунке 2-64. Каждые 125 мксек порождается новый кадр. Эта скорость поддерживается специальными часами - мастер-таймером. Каждый слот в кадре содержит один бит из определенного источника. Порядок сканирования источников строго фиксирован.

Рисунок 2-64. Синхронный и асинхронный способы передачи

В АТМ нет строго порядка поступления ячеек от различных источников. Пример потока АТМ-ячеек показан на рисунке 2-64(b). Ячейки могут поступать от разных источников и в разном порядке. Не важно даже, чтобы поток ячеек от одного компьютера был непрерывен. Если возникают разрывы, то они заполняются ячейками ожидания.

В АТМ не стандартизован формат самой ячейки. Требуется только, чтобы ячейки могли передаваться носителями (кадрами, фреймами и т.п.) в рамках таких стандартов, как Т1, Т3, Е1, SONET, FDDI и т.п.

В настоящее время скорость 155,52 Mбит/сек. является стандартной для АТМ, равно как и учетверенная скорость - 622,08 Mбит/сек. Однако в ближайшем будущем ожидается достижение 44 736 Mбит/сек.

Стандартной средой передачи для АТМ является оптоволокно. Однако на расстояниях в сотни метров можно использовать коаксиал или витую пару 5-й категории. Оптоволокно может покрывать расстояния на многие километры. Каждая волоконно-оптическая линия соединяет либо компьютер с АТМ-переключателем, либо два АТМ-переключателя. АТМ-линии – это соединения типа «точка-точка». На одной линии не может находиться более одного источника ячеек. По каждой линии передача возможна только в одном направлении, поэтому для обеспечения полного дуплекса нужны две АТМ-линии. С помощью АТМ-переключателей возможно дублирование одной и той же ячейки для передачи этой ячейки по нескольким линиям. Так реализуют режим вещания, т.е. передачу от одного ко многим.

Подуровень сопряжения с физической средой (PMD) в стандарте АТМ обеспечивает съем битов с линии и передачу их на линию. Для физически разных линий (коаксиал, оптоволокно и т.п.) используют разное оборудование. Подуровень преобразования при передаче (TC) обеспечивает единый интерфейс с АТМ-уровнем при передаче ячеек в обоих направлениях. Именно ТС-подуровень обеспечивает сопряжение АТМ-уровня с протоколом передачи в выбранной среде, например, в случае SONET это будет интерфейс STS-3, поддерживающий скорость 155,52 Мбит/сек. АТМ-уровень обеспечивает поток ячеек, а PMD-подуровень преобразует их в поток битов в физической среде.

При входящем потоке PMD-подуровень передает поток битов на ТС-подуровень. Задача ТС-подуровня - определить, где кончается одна ячейка, а где начинается другая. Поскольку в поступающем потоке битов нет никаких признаков деления между ячейками, то это весьма сложная задача. Как она решается, мы рассмотрим в разделе, посвященном канальному уровню, поскольку именно канальный уровень отвечает за преобразование потока битов в поток кадров или ячеек.

АТМ-переключатели

Здесь мы рассмотрим основные принципы организации АТМ переключателей и их функционирования.

На рисунке 2-65 показана общая схема организации АТМ-переключателя. Есть набор входных линий, по которым ячейки поступают в переключатель, и, как правило, такое же число выходных линий, по которым ячейки двигаются после коммутации. Обычно переключатель работает синхронно: длительность цикла строго фиксирована. В течение каждого цикла просматриваются все входные линии и, если на линию к этому моменту целиком поступила ячейка, то она считывается и передается в центр коммутации, а затем на выходную линию.

Переключатель может быть конвейерным, т.е. обработка одной ячейки может занимать более одного цикла. Ячейки поступают асинхронно, т.е. таймер переключателя отмечает момент начала очередного цикла. Если ячейка не поступила целиком за один цикл, то она должна ожидать начала следующего цикла.

Все АТМ-переключатели должны удовлетворять следующим требованиям:

  • терять как можно меньше ячеек

  • никогда не менять порядок поступления ячеек по каждому виртуальному соединению

Первое требование означает, что АТМ-переключатель должен обеспечивать достаточно большую скорость переключения, но так, чтобы не терять ячейки. Считается допустимой потеря 1 ячейки на каждые 1012. В больших переключателях считается допустимой потеря 1-2 ячеек за час работы. Второе требование - сохранять порядок поступления ячеек неизменным - существенно усложняет конструкцию переключателя, но таково требование АТМ-стандарта.

Одна из ключевых проблем конструкции АТМ-переключателей состоит в следующем: что делать, когда сразу по нескольким линиям пришли ячейки, которые должны быть отправлены по одной и той же выходной линии? Напрашивается решение: взять одну ячейку, обработать ее, а другую сбросить. Но в силу требования 1 оно не годится. Возможно другое решение: буферизовать ячейки на входе. Пусть в начале цикла 1 (рисунок 2-66(а)) поступило четыре ячейки, две из которых должны быть отправлены по линии 2. Поскольку из-за линии 2 возник конфликт, то только три ячейки передаются на выходные линии. Поэтому к началу цикла 2 (рисунок 2-66(b)) на выходе переключателя появятся три ячейки, но на вход поступят новые. К началу цикла 3 (рисунок 2-66(с)) на входе останется только одна ячейка, и очередь рассосется только на четвертом цикле. В случае буферизации на входе надо следить за тем, чтобы дисциплина обслуживания возникающих очередей была бы справедливой и равномерно обслуживала очереди на всех линиях. Недостаток этого решения в том, что очередь на входе может блокировать даже те ячейки, которые должны быть перекоммутированы на линии, на которых нет конфликтов. Поэтому по соответствующему виртуальному соединению скорость упадет. Этот эффект называется блокировкой на входе. Кроме этого, буферизация ячейки на входе требует дополнительной логики в схемах, что усложняет конструкцию АТМ-переключателя. Альтернативным решением может быть буферизация на выходе. Это решение показано на рисунке 2-67. Если несколько ячеек должны уйти по одной и той же линии, то они передаются на выход и буферизуются там. Это требует меньше циклов, в нашем примере только 3. В общем случае Karol 1987 показал, что буферизация на выходе эффективнее, чем буферизация на входе. Рассмотрим конструкцию АТМ-переключателя, использующего буферизацию на выходе. Этот тип переключателей называется переключатель выталкивающего типа. Он показан на рисунке 2-68 для конфигурации 8х8 линий. Здесь каждая входная линия соединена с шиной, к которой подключены все выходные линии. Каждая входная шина имеет свой механизм управления, не зависящий от других, что существенно упрощает конструкцию. У каждой поступающей ячейки аппаратно анализируется заголовок, чтобы определить, какому виртуальному соединению она принадлежит. Затем, с помощью таблицы коммутации, определяется выходная линия, через которую эта ячейка должна покинуть переключатель. Пересечение с соответствующей выходной линией активизируется, и, когда ячейка доходит до этого пересечения, она попадает в буфер. Ресурсов переключателя достаточно, чтобы буферизовать на одном выходе ячейки со всех входов, если это потребуется, или размножить ячейки, если их надо разослать по нескольким виртуальным соединениям. Естественно было бы буферизовать все конфликтующие ячейки в выходном буфере. Однако для переключателей, например, на 1024 линий, нам потребовалось бы 1024 буферов по 1024х53 байтов. Слишком много! Выход из этой ситуации - выделение лишь n байтов на буфер, где n – параметр настройки. Если конфликтующих ячеек больше, то ячейки, не попавшие в буфер, сбрасываются. Здесь опять-таки надо быть осторожным, определяя на каких входных линиях сбрасывать ячейки, из каких выходных буферов выталкивать ячейки на очередном цикле так, чтобы не было дискриминации. Регулируя параметр n, можно варьировать стоимость и число сбрасываемых ячеек, что влияет на цену переключателя.

Переключатели Батчера-Баньяна

Основным недостатком переключателей выталкивающего типа является то, что центр коммутации - простой коммутатор, а это означает, что его сложность растет квадратично от числа коммутируемых линий. Из рассмотрения принципов построения коммутаторов для коммутации каналов мы уже знаем, что одно из решений - каскадные коммутаторы. Аналогичное решение возможно и для коммутации пакетов. Это решение называют переключателем Батчера-Баньяна. Как и переключатели выталкивающего типа, переключатель Батчера-Баньяна синхронный, т.е. за один цикл он может обрабатывать несколько входных линий. Он называется так, поскольку похож на корни баньянового дерева. В баньяновых переключателях для каждого входа существует ровно один путь к любому из выходов. Маршрутизация пакета происходит в каждом узле на основе адреса выходной линии, которой должен достичь пакет. Адрес выходной линии определяют на входе по номеру виртуального соединения. В данном случае трехбитовый номер впереди ячейки используется в каждом узле для маршрутизации. В каждом из 12 переключающих элементов есть два входа и два выхода. В зависимости от значения соответствующего разряда ячейка направляется либо в порт 0, либо в порт 1. Если обе ячейки, поступившие на вход одного и того же коммутирующего элемента, должны быть направлены на один и тот же порт, то направляется одна, а вторая сбрасывается. Коллизии в баньяновской сети возникают, когда в одном и том же элементе в одно и тоже время надо использовать один и тот же порт. На рисунке 2-70 (а) показаны коллизии. Идея Батчера состояла в том, чтобы переставить ячейки на входах так, чтобы в баньяновской сети конфликтов не возникало. Для сортировки входов Батчер в 1968 году предложил специальный переключатель. Подобно баньяновскому переключателю, переключатель Батчера строится из элементов 2х2, работает синхронно и дискретно. В каждом элементе выходные адреса ячеек сравниваются. Больший направляется по стрелке, а меньший - в противоположном направлении. Если ячейка одна, то против стрелки. Подчеркнем, что сравниваются не отдельные биты, а весь адрес как число.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее