2 (Ответики к экзамену), страница 4

2019-05-12СтудИзба

Описание файла

Файл "2" внутри архива находится в папке "Ответики к экзамену". Документ из архива "Ответики к экзамену", который расположен в категории "". Всё это находится в предмете "компьютерные сети" из 6 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Онлайн просмотр документа "2"

Текст 4 страницы из документа "2"

где H – ширина полосы пропускания канала, выраженная в Гц, V - количество уровней в сигнале. Эта теорема также показывает, что, например, бессмысленно сканировать линию чаще, чем удвоенная ширина полосы пропускания. Действительно, все частоты выше этой отсутствуют в сигнале. Однако теорема Найквиста не учитывает шум в канале, который измеряется как отношение мощности полезного сигнала к мощности шума: S/N. Эта величина измеряется в децибелах: 10 log10(S/N) dB. Например, если отношение S/N равно 10, то говорят о шуме в 10 dB, если отношение равно 100, то - 20 dB. На случай канала с шумом есть теорема Шеннона, по которой максимальная скорость передачи по каналу с шумом равна

H log2 (1+S/N) бит/сек., где S/N - соотношение сигнал-шум в канале.

Как мы уже отмечали в разделе 2.1.2, скорость передачи данных зависит от способа представления данных на физическом уровне и сигнальной скорости, или скорости модуляции - скорости изменения значения сигнала. Скорость изменений сигнала в секунду измеряется в единицах, называемых бот. Если скорость изменения значения сигнала b бот, то это не означает, что данные передается со скоростью b бит/сек. Многое зависит способа кодирования сигнала: одно изменение значения может кодировать сразу несколько бит. Если используется 8 значений (уровней) сигнала, то каждое изменение его значения кодирует сразу 3 бита. Если используется только два значения сигнала, то скорость в битах равна скорости в ботах.

  • Аналоговые данные – аналоговый сигнал. Аналоговые данные в электрической форме могут легко и дешево передаваться с помощью аналоговых сигналов. Хорошим примером этому случаю является телефония, которую мы рассмотрим в разделе 2.5.

Аналоговые данные – Аналоговый сигнал

Анализ этого случая начнем с того, чтобы понять, где может возникнуть потребность в такого вида преобразованиях. Аналоговая модуляция цифровых данных возникает там, где нет цифровых каналов. Цифровое кодирование аналоговых данных возникает тогда, когда есть цифровые каналы. Прежде всего, такая потребность возникает при использовании радиоканалов. Если передавать аудиоинформацию в голосовом диапазоне (300 – 3000 Гц), то потребуется антенна диаметром в несколько километров. Модуляция, т.е. объединение исходного сигнала m(t) и несущей частоты ƒc, позволяет нужным образом изменять параметры исходного сигнала и тем самым упростить решение ряда технических проблем. Кроме этого, модуляция позволяет использовать методы мультиплексирования или уплотнения. (О мультиплексировании мы поговорим в разделе 2.4, а в разделах 2.3 и 2.5 мы рассмотрим подробнее использование электромагнитных волн для передачи).

При амплитудной модуляции форма результирующего сигнала определяется формулой:

, где ƒc - частота несущей,

na– индекс модуляции, который определяют как отношение амплитуды исходного сигнала к амплитуде несущего сигнала.

Форма результирующего сигнала при частотной модуляции определяется следующим выражением:

, где  nf - индекс частотной модуляции, m(t)=1+na x(t).

Сигнал, получаемый фазовой модуляцией, определяет соотношение:

, где np – индекс фазовой модуляции.

Все эти три вида модуляции порождают сигнал S(t), спектр которого симметричен относительно ƒc.

11.Беспроводная связь (электромагнитный спектр, радиопередача, микроволновая передача, видимое излучение). TDMA, FDMA, CDMA - методы множественного доступа к беспроводному каналу.

Беспроводная связь

Электромагнитный спектр

Как известно, электроны при движении образуют электромагнитные колебания. Это явление Максвелл предсказал в 1865, а Генрих Герц экспериментально обнаружил в 1887 году. Если к источнику электромагнитных волн подключить антенну соответствующего размера, то волны будут распространяться и регистрироваться приемниками. Длина антенны, как у приемника, так и у передатчика, и длина излучаемой/принимаемой ею волны связаны определенными соотношениями. Например, длина антенны приемника не может быть короче половины длины принимаемой ею волны. При определенных условиях, о которых мы будем разговаривать ниже, волны будут распространяться в строго определенном направлении. В этом случае антенна приемника должна быть должным образом ориентирована в пространстве по отношению к антенне передатчика, чтобы принимать сигналы. При других условиях антенна передатчика распространяет электромагнитные волны во всех направлениях. В вакууме электромагнитная волна распространяется со скоростью света (С=3х108 м/сек.). В медном проводнике эта скорость составляет 2/3 от скорости в вакууме. Будем обозначать ƒ - частоту, а λ - длину волны. Фундаментальное соотношение, соединяющее ƒ, С и λ, таково:

ƒ•λ=С   (2-1)

Поскольку С - константа, зная λ, мы знаем ƒ, и наоборот. Например, волны с частотой в 1 МГц, согласно этому соотношению, имеют длину волны 300 метров, а волны длиной в 1 см имеют частоту 30 ГГц. Напомним, что длина волны определяет размер и геометрию антенны. Для передачи информации из всего этого спектра используется только следующие диапазоны: радио, микроволновый, инфракрасный, видимый и, частично, ультрафиолетовый. Диапазоны рентгеновского излучения, гамма-излучения и большая часть ультрафиолетового, хотя и имеют большие частоты, а потому и более предпочтительны для передачи, однако требуют сложной аппаратуры для генерации и модуляции, плохо преодолевают препятствия и, что самое главное, опасны для живой материи. Количество данных, передаваемых электромагнитной волной, определяется ее шириной, т.е. спектром частот гармоник, составляющих эту волну.

Таблица 2-27. Характеристики частотных диапазонов

Диапазон частот

Название

Аналоговые данные

Цифровые данные

Область применения

Модуляция

Полоса пропускания

Модуляция

Скорость передачи

30-300 кГц

LF (low frequency - низкие частоты, НЧ)

Обычно не используется.

ASK, FSK, MSK

0,1-100 бит/сек.

Навигация

300-3000 кГц

MF (medium frequency - средние частоты, СЧ)

AM

до 4 кГц

ASK, FSK, MSK

10-1000 бит/сек.

АМ-радио

3-30 МГц

HF (high frequency - высокие частоты, ВЧ)

AM, SSB

до 4 кГц

ASK, FSK, MSK

10-3000 бит/сек.

Коротковолновое радио

30-300 МГц

VHF (very high frequency - очень высокие частоты, ОВЧ)

AM, SSB, FM

5 кГц - 5 МГц

FSK, PSK

до 100 кбит/сек.

Телевидение метрового диапазона

300-3000 МГц

UHF (ultrahigh frequency - ультравысокие частоты, УВЧ)

FM, SSB

до 20 МГц

PSK

до 10 Мбит/сек.

Телевидение дециметрового диапазона, наземные микроволны

3-30 ГГц

SHF (superhigh frequency - сверхвысокие частоты, СВЧ)

FM

до 500 МГц

PSK

до 100 Мбит/сек.

Наземные и спутниковые микроволны

30-300 ГГц

EHF (superhigh frequency - чрезвычайно высокие частоты, ЧВЧ)

FM

до 1 ГГц

PSK

до 750 Мбит/сек.

Экспериментальные соединения «точка-точка»

Рассмотрим уравнение 2-1. Разрешив его относительно ƒ и продифференцировав по λ, получим:

(2-2)

Переписав уравнение 2-2 в разностной форме, получим:

(2-3)

Задав некоторую полосу длин волн, мы получим полосу частот, откуда получим скорость передачи для этой полосы частот. Чем шире полоса, тем выше битовая скорость. На практике чаще всего используются узко-частотные полосы (Δƒ/ƒ<<1). В дальнейшем, рассматривая использование отмеченных выше частей электромагнитного спектра, мы будем предполагать именно узко-частотную передачу. В противоположность такой передаче используется, особенно военными и спецслужбами, так называемая широко-частотная передача. Идея ее состоит в том, что при передаче частота несущей волны меняется по определенному закону в диапазоне полосы. Перехватить такую передачу можно, только если известен закон изменения частоты несущей.

Радиопередача

Радиоволны распространяются на большие расстояния, легко преодолевают преграды, техника их генерации и приема хорошо изучена, есть много специалистов по ее применению. Поэтому они широко используются для связи как вне, так внутри помещений. Поскольку радиоволны распространяются во всех направлениях, то принимающая и передающая антенны не требуют дополнительной настройки и взаимного расположения. Свойства радиоволн зависят от их частоты. На низких частотах, т.е. длинных волнах, они прекрасно преодолевают препятствия, но мощность сигнала падает пропорционально 1/r3 , где r - расстояние до источника.   На высоких частотах радиоволны распространяются по прямой, но хуже преодолевают препятствия. Для некоторых частот помехой становится даже дождь. На всех частотах радиоволны чувствительны к помехам от электрических устройств. В силу перечисленных выше свойств лицензирование, т.е. право на использование частот в радиодиапазоне, находится под жестким контролем государства.

Микроволновая передача

При частоте выше 10 МГц мы попадаем в область микроволнового диапазона. Волны в этом диапазоне распространяются в строго определенном направлении и могут быть сфокусированы с помощью параболической антенны, имеющей вид телевизионной тарелки. Однако приемная и передающая антенны должны быть тщательно ориентированы в пространстве по отношению друг к другу. Такая направленность позволяет строить цепочку ретрансляторов и таким образом передавать сигнал на большие расстояния. До появления оптоволокна радиорелейная связь составляла основу телефонных систем на больших расстояниях. На определенном расстоянии друг от друга ставили башни с ретрансляторами. Высота башни зависела от расстояния и мощности передатчика. Обычно 100-метровая башня покрывает расстояние в 80 км.

Микроволны не проходят сквозь здания так же хорошо, как низкочастотные волны. Кроме этого, из-за рефракции в нижних слоях атмосфер они могут отклоняться от прямого направления. При этом увеличивается задержка, нарушается передача. Передача на этих частотах зависит также и от погоды. Как уже не раз отмечалось, при повышении влажности (дождь, туман и т.п.) ширина полосы резко сужается, растет шум, сигнал рассеивается. Обычно операторы держат определенный частотный резерв (около 10% каналов) на случай подобных нарушений и при необходимости переключаются на резервные частоты, чтобы обойти зону осадков. На сегодня микроволновый диапазон широко используется в телефонии, сотовой телефонии, телевидении и других приложениях. Одно из главных достоинств микроволнового диапазона - не надо ничего прокладывать.

Инфракрасные и миллиметровые волны

Инфракрасное излучение и излучение в миллиметровом диапазоне используется на небольших расстояниях в блоках дистанционного управления. Основной недостаток излучения в этом диапазоне - оно не проходит через преграду. Для инфракрасного излучения лист бумаги – непреодолимое препятствие. Этот недостаток одновременно является преимуществом, когда излучение в одной комнате не интерферирует с излучением в другой. На эту частоту не надо получать разрешения. Это прекрасный канал для передачи данных внутри помещений на небольших расстояниях.

Видимое излучение

Видимый диапазон также используется для передачи. Обычно источником света является лазер. Монохромное когерентное излучение легко фокусируется. Однако дождь или туман портят дело. Передачу способны испортить даже конвекционные потоки на крыше, возникающие в жаркий день. Они вызывают дрожание луча вокруг приемника, что ухудшает качество передачи.

CDMA (Code Division Multiple Access) – множественный доступ на основе разделения кодов

GSM – пример системы, где использована довольно сложная комбинация техник FDM, TDM, ALOHA для беспроводной сотовой связи. В ней ни один из пользователей системы не может использовать всю полосу пропускания, предоставленную системе. Если при этом принять в расчет сужение полосы пропускания из-за проблем на границе сот, падение мощности сигналов от мобильных терминалов в пограничных сотовых зонах, накладных расходов на шифрование в целях безопасности, то становится ясно, что высокую скорость передачи в этой системе получить не просто. Метод CDMA основан на принципиально иной идее – каждый участник связи может использовать всю полосу пропускания канала. У каждого свой уникальный «язык», поэтому все могут говорить сразу. Понимать друг друга будут только те, кто говорит на одном языке. В CDMA-системе каждый бит сообщения кодируется последовательностью из m частиц. Бит со значением 0 передается инвертированной последовательностью частиц, бит 1 – прямой. Каждой мобильной станции присваивается уникальный код – последовательность частиц. Кроме этого, поскольку каждая станция имеет уникальную последовательность частиц, то не требуется дополнительного шифрования. Метод ортогональных последовательностей. Как получатель узнает последовательность частиц отправителя? Например, за счет соответствующего быстродействия он может слышать всех, обрабатывая алгоритмом декодирования для каждой последовательности в параллель.

12.Телефонные сети: структура, локальная петля, магистраль и мультиплексирование.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее