GLAVA5 (Конспект лекций по курсу Физическая химия)

2018-02-14СтудИзба

Описание файла

Файл "GLAVA5" внутри архива находится в папке "Конспект лекций по курсу Физическая химия". Документ из архива "Конспект лекций по курсу Физическая химия", который расположен в категории "". Всё это находится в предмете "физическая химия" из 4 семестр, которые можно найти в файловом архиве МПУ. Не смотря на прямую связь этого архива с МПУ, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "физическая химия" в общих файлах.

Онлайн просмотр документа "GLAVA5"

Текст из документа "GLAVA5"

46


Глава V. Третий закон термодинамики.

  1. Недостаточность I и II законов термодинамики

для расчета химического сродства.

Использование первого и второго законов термодинамики для расчетов химического сродства связано с решением дифференциальных уравнений. Их интегрирование приводит к появлению констант интегрирования, значения которых не могут быть найдены.

Например, при расчете химического сродства по уравнению изотермы химической реакции (4.92) появляется необходимость интегрирования уравнений изобары или изохоры (4.95, 4.96). При этом появляется неопределенная const интегрирования:

,

где ,

поэтому окончательно:

.

В полученное уравнение входят теплоемкости веществ, участвующих в реакции в зависимости от температуры вплоть до Т, а также тепловой эффект химической реакции при одной из температур в интервале, включающем Т.

Теплоемкости и тепловые эффекты являются термическими величинами. Их измерения производятся в калориметрах различных типов. Наиболее сложным является определение константы равновесия реакции, т. к. ее расчет невозможен в силу неопределенности const.

Расчет сродства возможен и по уравнению (4.56):

G = H - T S,

где S может быть определено из уравнения второго закона термодинамики (4.21):

, (5.1)

интегрирование которого приводит к следующему результату:

, (5.2)

где величина const не определена.

Таким образом, решение основной задачи химической термодинамики - расчета величины химического сродства наталкивается на недостаточность первого и второго законов термодинамики. Выход из этой неопределенности можно искать в двух направлениях. Во-первых, можно находить значение const эмпирическим путем, о чем уже говорилось выше. Но создание соответствующей целям измерения аппаратуры, особенно для изучения высокотемпературных металлургических реакций, связано с большими трудностями, а кроме того, достижение равновесия во многих случаях требует длительного времени.

Развитие химической промышленности и металлургии в начале века потребовало многочисленных данных для расчета химического сродства, причем только на основании сравнительно простых измерений термических величин.

Поэтому потребовалось отыскание общего, дополнительного к обоим законам термодинамики начального условия, позволяющего находить значения константы интегрирования, не прибегая к прямому эксперименту. Эту задачу впервые решил В. Нернст в 1906 г. Его работы, а также работы М. Планка привели к введению новых теорем и постулатов, составивших содержание третьего начала термодинамики.

2. Тепловая теорема Нернста.

Обобщенное уравнение Гиббса - Гельмгольца в дифференциальной форме записи имеет вид (4.42):

.

После умножения правой и левой его частей на :

или

. (5.3)

После интегрирования:

или в более удобной форме записи:

. (5.4)

Урвнение (5.4) - интегральная форма записи уравнения Гиббса - Гельмгольца.

Уравнение (5.4) неоднозначно, т. к. в него входит const, значение которой ничем не ограничено. Поэтому в координатном поле “энергия - температура”, вместо одной кривой А = f (T), получается семейство кривых, отличающихся значением const. В то же время зависимость Q=f (T) однозначна и представлена единственной кривой (рис. 5.1).

Для выбора правильной А - кривой достаточно найти одно значение А1 при какой-либо Т1, отличной от нуля. Это тот эмпирический путь, условия реализации которого были описаны ранее.

Теорема Нернста позволяет сделать правильный выбор более общим способом. Им было установлено на основании многочисленных экспериментальных данных, что в конденсированных системах Q - кривая и А - кривая сливаются вблизи абсолютного нуля температуры (тепловая теорема Нерста).

Рис. 5.1. Кривые A = f (T) и Q = f (T).

Конденсированными называются системы, состоящие из чистых совершенно однородных твердых кристаллических тел, не образующих между собой растворов. Для дальнейшего использования теоремы Нернста ее необходимо выразить в аналитической форме. Слияние двух кривых определяется слиянием их касательных, т. е. равенством пределов их производных при Т 0 и значений функций:

и А0 = Q0. (5.5)

Для отыскания значения общего предела производных, следует вновь обратиться к уравнению Гиббса - Гельмгольца, переписанному в виде:

. (5.6)

При Т0 = 0 выражение (5.6) обращается в неопределенность, так как А0 = Q0 и . Для ее раскрытия необходимо найти отношение пределов производных от числителя и знаменателя:

.

Знаменатель этого выражения равен единице, а числитель, согласно (5.5), обращается в ноль. Поэтому:

(5.7)

и согласно тому же (5.5):

(5.8)

Итак, общая касательная кривых Q и А = f (T) параллельна температурной оси (рис. 5.1), что и определяет правильность выбора А = f (T) - кривой.

В дальнейшем теорема Нернста была обоснована более строгим образом, независимо от принципа максимальной работы. Кроме того, было также показано, что жидкости не следует причислять к конденсированным телам, к которым теорема Нернста точно применима.

3. Следствия из тепловой теоремы Нернста.

I следствие. Производная в соответствии с уравнением Кирхгофа (3.26) равна алгебраической сумме теплоемкостей составных частей системы. Но , поэтому:

. (5.9)

Это означает, что при абсолютном нуле для конденсированных систем строго соблюдается правило Неймана - Коппа об аддитивности теплоемкостей.

Нернст пошел дальше и доказал, что не только алгебраическая сумма всех теплоемкостей равна нулю (5.9), но и теплоемкость каждого в отдельности конденсированного тела равна нулю:

. (5.10)

Ранее в главе II показано, что этот вывод находится в согласии с опытом и что он следует из квантовой теории теплоемкости.

II следствие. Согласно тепловой теории Нернста . Но , a , поэтому:

. (5.11)

Условие (5.11) показывает, что при любых процессах с конденсированными телами при абсолютном нуле температуры энтропия не изменяется. Это равносильно тому, что энтропии всех конденсированных тел при Т 0 одинаковы. М. Планк (1912 г.), расширяя теорему Нернста, предложил, что и для каждого конденсированного тела в отдельности:

, (5.12)

т. е. энтропия правильно образованного кристалла чистого вещества при абсолютном нуле температур равна нулю.

Формулировка М. Планка позволяет вычислять абсолютные значения энтропии, что открыло путь к широкому применению таблиц термодинамических функций для вычисления химических равновесий.

III следствие. Для того, чтобы найти величину const в уравнении (5.4) можно поступить следующим образом: уравнение вводится в уравнение (5.3):

.

Интегрирование в пределах от 0 до Т дает:

или

.

Полученное выражение идентично выражению (5.4), если положить, что . Но согласно уравнению Гиббса - Гельмгольца ():

, где .

Поэтому:

const = 0, (5.13)

что устраняет неопределенность в интеграле уравнения Гиббса - Гельмгольца (5.4) и позволяет получить истинные значения А = f (Т) для конденсированных систем.

Теорема Нернста непосредственно к газовым равновесиям неприменима. Поэтому для них она не может дать численного значения const в уравнении Гиббса - Гельмгольца (5.4).

Однако косвенным путем она дает важные сведения. Оказывается, что величина const интегрирования в уравнении изобары химической реакции:

равна алгебраической сумме истинных химических постоянных продуктов химической реакци:

, (5.14)

что позволяет вычислять химическое сродство при различных температурах для газовых равновесий.

4. Расчет абсолютных значений энтропии.

Ранее были получены уравнения, позволяющие вычислять изменение энтропии по известным изменениям параметров системы и известным теплоемкостям.

Формулировка Планка (5.12) позволяет вычислять абсолютное значение энтропии конденсированных веществ, так как в этом случае необходимость выбора условного начала отсчета этой функции отпадает. В самом деле, если рассматриваемое вещество при температуре Т находится в кристаллическом состоянии и в той же модификации, что и при абсолютном нуле, то его энтропия определится следующим образом:

, a dq = CdT, тогда

или окончательно

, т. к. S0 = 0.

Если же в интервале (0 - Т) К вещество при температуре ТФ.П переходит из одной формы в другую, то следует учесть возрастание энтропии данного фазового перехода согласно уравнению (4.47), которое составит:

,

где qФ.П. - энергетический эффект фазового перехода.

Для примера: рассчитать энтропию газообразного вещества при температуре Т, если при температуре ТS оно плавится с энергетическим эффектом , а при температуре ТЕ переходит в газообразное состояние, причем энергетический эффект этого перехода . При температуре происходит полиморфное превращение с энергетическим эффектом .

Тогда энтропия вещества при температуре Т определится из выражения:

, (5.15)

где СР( ) - теплоемкость - модификации вещества;

СР( ) - теплоемкость - модификации вещества;

СР(Ж) - теплоемкость вещества в жидком состоянии;

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5183
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее