Лекция 12 (Лекции по микропроцессорной технике)

2018-01-12СтудИзба

Описание файла

Файл "Лекция 12" внутри архива находится в папке "Лекции по микропроцессорной технике". Документ из архива "Лекции по микропроцессорной технике", который расположен в категории "". Всё это находится в предмете "микропроцессорная техника" из 5 семестр, которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "микропроцессорная техника" в общих файлах.

Онлайн просмотр документа "Лекция 12"

Текст из документа "Лекция 12"

9


Тема: ОРГАНИЗАЦИЯ ФУНКЦИОНИРОВАНИЯ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

Вопросы: 1.Типовые структуры вычислительных систем.

2.Кластеры.

3.Организация функционирования вычислительных систем.

Литература: 1 вопрос: [1]: 261...267;

2 вопрос: [1]: 267...271;

3 вопрос: [1]: 271...273.

1. Типовые структуры вычислительных систем

С момента появления первых систем было опробовано большое количество разнообразных структур систем, отличающихся друг от друга различными техническими решениями. Практика показала, что каждая структура вычислительной системы эффективно обрабатывает лишь задачи определенного класса. При этом необходимо, чтобы структура вычислительной системы максимально соответствовала структуре решаемых задач. Только в этом случае система обеспечивает максимальную производительность.

Универсальной структуры вычислительной системы, одинаково хорошо обрабатывающей задачи любого типа, не существует.

Классификация уровней программного параллелизма включает шесть позиций: независимые задания, отдельные части заданий, программы и подпрограммы, циклы и итерации, операторы и команды фазы отдельных команд. Для каждой из них имеются специфические свойства параллельной обработки, апробированные в различных структурах вычислительных систем. Заметим, что данный перечень совершенно не затрагивает этапы выбора алгоритмов решения, на которых могут анализироваться альтернативные алгоритмы (а значит, и программы), дающие различные результаты.

Для каждого вида параллельных работ имеются структуры вычислительных средств, используемые в различных вычислительных системах. Верхние три уровня, включающие независимые задания, шаги или части заданий и отдельные программы, имеют единое средство параллельной обработки — мультипроцессирование, т.е. многопроцессорные вычислительные системы, относящиеся к архитектуре МКМД. Программные циклы и итерации требуют использования векторной обработки (архитектура ОКМД). Операторы и команды, выполняемые ЭВМ, ориентированы на многофункциональную обработку. Параллельная обработка фаз последовательно выполняемых команд приводит к организации конвейера команд.

Рассмотрим возможные структуры вычислительных систем, которые обеспечивают перечисленные виды программного параллелизма.

ОКОД-структуры. Два нижних вида параллелизма реализуются в любых современных ЭВМ, включая и персональные ЭВМ. Данный тип архитектуры объединяет любые системы в однопроцессорном (одномашинном) варианте.

За 50 лет развития электронной вычислительной техники классическая структура ЭВМ претерпела значительные усовершенствования, однако основной принцип программного управления не был нарушен. Данная структура оказалась сосредоточенной вокруг оперативной памяти, так как именно цепь «процессор — оперативная память» во многом определяет эффективную работу компьютера. При выполнении каждой команды необходимо неоднократное обращение к оперативной памяти: выбор команды, операндов, отсылка результатов и т.д.

Можно перечислить большое число приведенных улучшений классической структуры ЭВМ, ставших в настоящее время определенными стандартами при построении новых ЭВМ: иерархическое построение памяти ЭВМ, появление сверхоперативной памяти и кэш-памяти, относительная и косвенная адресация памяти, разделение процессоров ввода-вывода и обработки задач, появление систем прерывания и приоритетов и т.д.

В этом ряду следует рассматривать и организацию конвейера последовательно выполняемых команд: формирование адреса команды, выбор команды, формирование адресов и выбор операндов, выполнение команды, запись результата. Однако примитивная организация памяти (память линейна и одномерна) не позволяет организовать длинный и эффективный конвейер. Линейные участки современных программ редко превышают десяток, полтора последовательно выполняемых команд. Поэтому конвейер часто перезапускается, что снижает производительность ЭВМ в целом.

Многофункциональная обработка также нашла свое место при построении ЭВМ. Например, даже в персональных ЭВМ, построенных на микропроцессорах i486 и Pentium, в состав ЭВМ могут включаться и другие специализированные средства обработки: умножители, делители, сопроцессоры или блоки десятичной арифметики, сопроцессоры обработки графической информации и др. Все они совместно с центральным процессором ЭВМ позволяют создавать своеобразные микроконвейеры, целью которых является повышение скорости вычислений.

В последние годы широко используются еще несколько модификаций классической структуры. В связи с успехами микроэлектроники появилась возможность построения RISC-компьютеров (Reduced Instruction Set Computing), т.е. ЭВМ с сокращенным набором команд.

Большие ЭВМ предыдущих поколений не имели большой сверхоперативной памяти, поэтому они имели достаточно сложную систему CISC-команд (Complete Instruction Set Computing — вычисления с полной системой команд). В этих машинах большую долю команд составляли команды типа «Память-память», в которых операнды и результаты операций находились в оперативной памяти. Время обращения к памяти и время вычислений соотносились примерно, как 5:1. В RISC-машинах с большой сверхоперативной памятью большой удельный вес составляют операции «регистр-регистр» и отношение времени обращения к памяти и времени вычислений составляет 2:1.

Поэтому в RISC-ЭВМ основу системы команд составляют наиболее употребительные, «короткие» операции типа алгебраического сложения. Сложные операции выполняются как подпрограммы, состоящие из простых операций. Это позволяет значительно упростить внутреннюю структуру процессора, уменьшить фазы дробления конвейерной обработки и увеличить частоту работы конвейера. Но здесь необходимо отметить, что за эффект приходится расплачиваться усложнением процедур обмена данными между регистрами сверхоперативной памяти и кэш-памяти с оперативной памятью.

Другой модификацией классической структуры ЭВМ является VLIW (Very Large Instuction Word) — ЭВМ с «очень длинным командным словом». ЭВМ этого типа выбирает из памяти суперкоманду, включающую несколько команд. Здесь возможны варианты.

В самом простом случае это приводит к появлению буфера команд (кэш-команд) с целью ускорения конвейера операций. В более сложных случаях в состав суперкоманд стараются включать параллельные команды, не связанные общими данными. Если процессор ЭВМ при этом построен из функционально независимых устройств (устройства алгебраического сложения, умножения, сопроцессоры), то в этом случае обеспечивается максимальный эффект работы ЭВМ. Но это направление связано с кардинальной перестройкой процессов трансляции и исполнения программ. Здесь значительно усложняются средства автоматизации программирования.

VLIW-компьютеры могут выполнять суперскалярную обработку, т.е. одновременно выполнять две или более команды. В целом ряде структур суперЭВМ использовалась эта идея. Отметим, что и в ПЭВМ последних выпусков имеется возможность выполнения двух команд одновременно. Эта реализация имеет две цели:

  • уменьшение отрицательного влияния команд ветвления вычислительного процесса путем выполнения независимых команд двух различных ветвей программы. При этом в какой-то степени исключаются срывы конвейера в обработке команд программы;

  • одновременное выполнение двух команд (независимых по данным и регистрам их хранения), например команды пересылки и арифметические операции.

ОКМД-структуры. Для реализации программного параллелизма, включающего циклы и итерации, используются матричные или векторные структуры. В них эффективно решаются задачи матричного исчисления, задачи решения систем алгебраических и дифференциальных уравнений, задачи теории поля, геодезические задачи, задачи аэродинамики. Теоретические проработки подобных структур относятся к концу 50-х — 60-м гг. Данные структуры очень хорошо зарекомендовали себя при решении перечисленных задач, но они получились очень дорогими по стоимости и эксплуатации. Кроме того, в тех случаях, когда структура параллелизма отличалась от матричной, возникает необходимость передачи данных между процессорами через коммутаторы. При этом эффективность вычислений резко снижается. Подобные структуры могут использоваться как сопроцессоры в системах будущих поколений.

МКОД-структуры большой практической реализации не получили. Задачи, в которых несколько процессоров могли бы эффективно обрабатывать один поток данных, в науке и технике неизвестны. С некоторой натяжкой к этому классу можно отнести фрагменты многофункциональной обработки, например обработку на разных процессорах команд с фиксированной и плавающей точкой.

Так же как фрагмент такой структуры, можно рассматривать локальную сеть персональных компьютеров, работающих с единой базой данных, но, скорее всего это — частный случай использования МКМД-структуры.

МКМД-структуры являются наиболее интересным классом структур вычислительных систем. После разочарований в структурах суперЭВМ, основанных на различном сочетании векторной и конвейерной обработки, усилия теоретиков и практиков сосредоточены в этом направлении.

Процессор

Память

Маршрутизатор


Уже из названия МКМД-структур видно, что в данных системах можно найти все перечисленные виды параллелизма. Этот класс дает большое разнообразие структур, сильно отличающихся друг от друга своими характеристиками (рис. 11.5).


Рис. 11.5. Типовые структуры ВС в МКМД (МIMD)-классе

Важную роль здесь играют способы взаимодействия ЭВМ или процессоров в системе. В сильносвязанных системах достигается высокая оперативность взаимодействия процессоров посредством общей оперативной памяти. При этом пользователь имеет дело с многопроцессорными вычислительными системами. Наиболее простыми по строению и организации функционирования являются однородные, симметричные структуры. Они обеспечивают простоту подключения процессоров и не требуют очень сложных централизованных операционных систем, размещаемых на одном из процессоров.

Однако при построении таких систем возникает много проблем с использованием общей оперативной памяти. Число комплексируемых процессоров не должно превышать 16. Для уменьшения числа обращений к памяти и конфликтных ситуаций может использоваться многоблочное построение ОП, функциональное закрепление отдельных блоков за процессорами, снабжение комплексируемых процессоров собственной памятью типа кэш. Но все эти методы не решают проблемы повышения производительности ВС в целом. Аппаратные затраты при этом существенно возрастают, а производительность систем увеличивается незначительно.

Появление мощных микропроцессоров типа Pentium привело к экспериментам по созданию многопроцессорных систем на их основе. Так, для включения мощных серверов в локальные сети персональных компьютеров была предложена несколько измененная структура использования ООП — мультипроцессирование с разделением памяти (Shared Memory multiprocessing, SMP). На общей шине оперативной памяти можно комплексировать до четырех микропроцессоров.

Слабосвязанные МКМД-системы могут строиться как многомашинные комплексы или использовать в качестве средств передачи информации общее поле внешней памяти на дисковых накопителях большой емкости. .

Невысокая оперативность взаимодействия заранее предопределяет ситуации, в которых число межпроцессорных конфликтов при обращении к общим данным и друг к другу было бы минимальным. Для этого необходимо, чтобы ЭВМ комплекса обменивались друг с другом с небольшой частотой, обеспечивая автономность процессов (программы и данные к ним) и параллелизм их выполнения. Только в этом случае обеспечивается надлежащий эффект. Эти проблемы решаются в сетях ЭВМ.

Успехи микроинтегральной технологии и появление БИС и СБИС позволяют расширить границы и этого направления. Возможно построение систем с десятками, сотнями и даже тысячами процессорных элементов, с размещением их в непосредственной близости друг от друга. Если каждый процессор системы имеет собственную память, то он также будет сохранять известную автономию в вычислениях. Считается, что именно такие системы займут доминирующее положение в мире компьютеров в ближайшие десять —пятнадцать лет. Подобные ВС получили название систем с массовым параллелизмом (Mass-Parallel Processing, MPP).

Все процессорные элементы в таких системах должны быть связаны единой коммутационной средой. Нетрудно видеть, что здесь возникают проблемы, аналогичные ОКМД-системам, но на новой технологической основе.

Передача данных в МРР-системах предполагает обмен не отдельными данными под централизованным управлением, а подготовленными процессами (программами вместе с данными). Этот принцип построения вычислений уже не соответствует принципам программного управления классической ЭВМ. Передача данных процесса по его готовности больше соответствует принципам построения «потоковых машин» (машин, управляемых потоками данных). Подобный подход позволяет строить системы с громадной производительностью и реализовывать проекты с любыми видами параллелизма, например, перейти к «систолическим вычислениям» с произвольным параллелизмом. Однако для этого необходимо решить целый ряд проблем, связанных с описанием и программированием коммутаций процессов и управления ими. Математическая база этой науки в настоящее время практически отсутствует.

2. Кластеры

Вычислительные системы как мощные средства обработки заданий пользователей широко используются не только автономно, но и в сетях ЭВМ в качестве серверов (см. рис. 11.5).

С увеличением размеров сетей и их развитием возрастают плотность информационных потоков, нагрузка на средства доступа к сетевым ресурсам и на средства обработки заданий. Круг задач, решаемых серверами, постоянно расширяется, становится многообразным и сложным. Чем выше ранг сети, тем более специализированными они становятся. Администраторы сетей должны постоянно наращивать их мощь и количество, оптимизируя характеристики сети под возрастающие запросы пользователей.

В сетях первых поколений серверы строились на основе больших и очень дорогих ЭВМ (mainframe), выпускаемых целым рядом компаний: Digital Equipment, Tandem, влившихся в корпорацию Compaq, IBM, Hewlett-Packard. Все они работали под управлением ОС Unix и способны были объединяться для совместной работы.

Как и во всякой развивающейся технологии, сложные универсальные серверы различных фирм-изготовителей должны были уступить место стандартным массовым решениям. Успехи микроэлектроники, повсеместное применение ПЭВМ, широкое распространение Internet/ Intranet-технологий позволили перейти к более простым и дешевы системам, например, на основе платформы Wintel. Опыт создания серверов на основе SMP- и МРР-структур показал, что они не обеспечивают хорошей адаптации к конкретным условиям функционирования, остаются дорогими и сложными в эксплуатации.

Одним из перспективных направлений здесь является кластеризация, т.е. технология, с помощью которой несколько серверов, сами являющиеся вычислительными системами, объединяются в единую систему более высокого ранга для повышения эффективности функционирования системы в целом.

Целями построения кластеров могут служить:

  • улучшение масштабируемости (способность к наращиванию мощности);

  • повышение надежности и готовности системы в целом;

  • увеличение суммарной производительности;

  • эффективное перераспределение нагрузок между компьютерами кластера;

  • -эффективное управление и контроль работы системы и т.п.

Улучшение масштабируемости или способность к наращиванию мощности предусматривает, что все элементы кластера имеют аппаратную, программную и информационную совместимость. В сочетании с простым и эффективным управлением изменение оборудования в идеальном кластере должно обеспечивать соответствующее изменение значений основных характеристик, т.е. добавление новых процессоров, дисковых систем должно сопровождаться пропорциональным ростом производительности, надежности и т.п. В реальных системах эта зависимость имеет нелинейный характер.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее