Лекция ИИ3 (Электронные лекции), страница 3

2017-12-27СтудИзба

Описание файла

Файл "Лекция ИИ3" внутри архива находится в папке "Электронные лекции". Документ из архива "Электронные лекции", который расположен в категории "". Всё это находится в предмете "медицинские приборы аппараты системы и комплексы (мпасик)" из 7 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "медицинские приборы аппараты системы и комплексы (мпасик)" в общих файлах.

Онлайн просмотр документа "Лекция ИИ3"

Текст 3 страницы из документа "Лекция ИИ3"

Пусть облучаемая система состоит из N0 объектов, каждый из которых обладает мишенью сечением S, и объемом V.

Пусть для инактивации объекта достаточно чтобы трек плотноионизирующей частицы прошел через сечение S мишени; такое событие будем именовать попаданием. Вероятность n попаданий в мишень, находящуюся в пределах объекта:

P(n) = (ne-)/n! , (1.2)

где - среднее число попаданий в мишень. Если D – среднее число частиц, пролетающих через единичную площадку, а S – сечение мишени, то

= SD.

Если N – число объектов, сохранивших после облучения исходные свойства (т.е. «выживших»), то N/N0 соответствует вероятности непопадания (n=0). Из уравнения (1.2) получим

N/N0 = ((SD)0e-SD)/0! = e-SD.

Если в среднем число попаданий равно числу мишеней, то SD=1, тогда N/N0 = 0.37. По статистике Пуассона реально поражается только 63% мишеней, т.к. часть попаданий испытали уже однажды пораженные мишени. Соответствующая доза обозначается как D37 (рис.1.8).

Г рафически зависимость доли выживших объектов от величины дозы выражается экспонентой

N/N0 = e-SD = e-D/D37.

РИ и -излучение вызывают редко расположенные акты ионизации. Для них вводят объем мишени. Аналогично выше сказанному,

P(n) = (ne-)/n!, = VD,

D – среднее число частиц, пролетающих через единичный объем мишени. Доля выживших объектов (рис.1.8) составляет

N/N0 = e-VD = e-D/D37; D37= 1/V.

Принцип усилителя – попадание в мишень приводит к развитию вторичных процессов, усиливающих действие радиации во много раз.

Поскольку доказано существование ферментативных систем, способных репарировать повреждения генетического аппарата клетки, возник новый динамический подход к радиологическим моделям. Становится общепринятым рассмотрение радиобиологического эффекта как результата интерференции двух противоположно направленных процессов – развитие начального радиационного поражения и его элиминации за счет функционирования репарирующих систем. Основываясь на этом, Хуг и Келлерер [15] предложили в качестве общей теории действия индуцирующих излучений на клетку “стохастическую гипотезу”. Она базируется на представлениях о том, что случайные и диффузно расположенные акты ионизации и возбуждения только в редких случаях однозначно приводят клетку к гибели. На эту “стохастику первого порядка” должна накладываться “стохастика более высоких порядков”, которая определяется динамической нестабильностью жизненных процессов, способных элиминировать или усиливать начальное радиационное повреждение. При формировании радиобиологического эффекта всегда происходит взаимодействие множества случайных событий (множественная стохастика). Стохастическая концепция рассматривает любой биообъект как динамическую систему, постоянно находящуюся в состоянии перехода из одного состояния в другое. Полученные дозовые кривые хорошо согласуются с экспериментом (см. рис.1.8).

Вероятностная модель представляет собой синтез теории попадания и стохастической концепции, дополненный вероятностными представлениями. Разные клетки, подвергнутые облучению в одной и той же дозе, поражаются в разной степени в соответствии с принципом попадания, но и потенциальные, и реализованные повреждения появляются с вероятностью меньшей единицы. Реализованные повреждения (или индуцированные ними изменения) наследуются при делении клеток и с некоторой вероятностью меньшей единицы и зависящей от числа этих повреждений, приводят к неосуществлению клеточного деления. Модель позволяет предсказать наблюдаемое многообразие радиобиологических эффектов на основе минимума исходных повреждений.

Рассмотрим пример микродозиметрии. Стохастический характер воздействия ИИ на биообъекты малых объемов и масс приводит к необходимости учитывать флуктуации, обусловленные следующими процессами:

  1. случайным характером числа частиц, прошедших через объём;

  2. вероятностным характером числа актов передачи энергии заряженной частицей при прохождении одного и того же отрезка пути;

  3. вероятностным характером величины переданной энергии в каждом акте взаимодействия.

Выход повреждений биологического объекта под действием ИИ:

где – функция отклика биоструктуры на событие энергопоглощения z, не имеет определения в виде простой математической зависимости; – вероятность того, что при дозе D удельная энергия в микрообъёме находится в пределах от z до , , где Е – поглощенная энергия в заданном микрообъёме, m – его масса.

§8. Репаративные процессы. Биологическое действие малых доз ИИ

Радиационные эффекты существенно зависят от темпа облучения, интервалов между облучениями и ЛПЭ отдельных видов ИИ. Это свидетельствует о возникновении процессов восстановления в клетках облучённого организма. Если бы такие процессы не возникали, эффект облучения не имел бы зависимости от мощности дозы и дробности облучения. Этот эффект обусловлен двумя основными факторами: репарацией субклеточных повреждений клеток и заменой летально повреждённых клеток репопуляцией сохранившихся.

Предполагают, что система репарации более эффективна в растущем организме, где клетки постоянно обмениваются веществом с окружающими клетками и жидкостями организма.

Время репарации для ОР в среднем составляет 10 мин, для ДР – несколько часов. Хромосомные аберрации образуются в основном только после двунитевых разрывов цепочек.

До некоторой дозы радиации восстановительные ферментные системы клетки справляются с задачей своевременного устранения повреждений. Если же повреждение почему-либо не устранено, что может привести к мутациям, ведущим к образованию опухолей, то в действие вступает иммунная защитная система.

В клетке содержатся естественные ловушки радикалов. До тех пор, пока они находятся в избытке по отношению к продуктам радиолиза, ДНК может быть защищена. Следовательно, для лучевого повреждения может существовать пороговая доза, при которой количество свободных радикалов не позволяет произвести их ликвидацию.

Принято считать, что дозы, превышающие в 5-10 раз естественный радиоактивный фон, являются малыми дозами. Для человека – это 4-5 рад (0,04 – 0,05 Гр ) при однократном облучении (см. главу 1 §4).

С научно-теоретической точки зрения невозможно доказать, вредными или безвредными являются малые дозы радиации (в пределах 1 мЗв). С помощи эпидемиологических исследований невозможно достичь надежного отношения доза–эффект при дозах менее 50 мЗв.

Доказано, что для запуска канцерогенного процесса должны иметь место несколько почти одновременных повреждений ДНК. Излучение же с малой линейной передачей энергией (ЛПЭ) главным образом вызывает ОР, которые репарируются. При малых мощностях дозы система сбора радикалов более эффективна, чем при высоких. При высоких дозах каждая клетка ткани может испытать несколько попаданий, в то время как при малых дозах клетка, подвергшаяся воздействию излучения, обычно окружена неповрежденными клетками.

Обратимся к экспериментальным данным. Так, эксперимент показал неправомерность экстраполяции эффектов, вызванными высокими дозами на низкие 14. Цитогенетические повреждения характеризовались более высокой эффективностью на единицу дозы в диапазоне низких доз, чем при облучении высокими дозами, а также наличием дозонезависимого участка между ними. Было обнаружено, что In vitro при D  0,3 Гр клеткам свойственна очень высокая радиочувствительность, гиперчувствительность; при D = 0,3 – 1,0 Гр – выживаемость мало зависела от дозы; при D  1 Гр наблюдалась линейная зависимость выживаемость/доза.

Для объяснения результатов авторы делают предположение, что индукция процессов репарации происходит при определенном уровне повреждения клеток. Запуск системы репарации и её эффективность зависят от типа клеток. Наблюдается также эффект адаптивного ответа (АО): клетки, предварительно облученные в малых дозах, становились менее чувствительными к последующим воздействиям высокой дозы. Но АО проявляется в узком диапазоне адаптирующих доз с экстремумом в очень узкой области доз, различающемся для разных типов клеток, в оптимальных для клеток физиологических условиях, зависящих от состава среды 14.

Исследования же влияния малых доз показывают, что они не только не оказывают угнетающего и тем более разрушительного действия на живые системы, но в очень многих случаях даже стимулируют их жизнедеятельность.

рис.1.9. Дозовая зависимость риска заболевания раком.

Так, например, в работе 12 показано, что импульсное воздействие ИИ (время воздействия 10–8 и 210–8 с, доза 2,710–5 и 310-4 Гр, скорость дозы - 2,710-3 и 1,510-4 Гр/с) приводило к возбуждению биоэлектрической активности мозга и поведения животных. В то же время высокая скорость дозы при очень коротких импульсах воздействия вызывала активизацию мозговых функций и влияла на поведение животных, тогда как малые скорости дозы не оказывали воздействий. Единичные импульсы ИИ вызывали реакцию нервных клеток и нервной системы, которая длилась от секунд до часов для нервных клеток и от дней до недель для нервных систем. Сравнение действия ИИ и ЭМИ показало, что они отличаются. ИИ вызывает легкую активизацию нервных клеток и некоторых форм поведения, тогда как ЭМИ импульсы вызывали слабое подавление функции мозга и поведения.

Вероятность действия ИИ малой дозы на небольшие объекты очень невелика. Например, сферу диаметром 7 мкм (ядро лимфоцита) пересекла бы 1,3 частицы при дозе 0,01 Гр. Однако, при этом наблюдается значительный биологический эффект. Это предполагает, что частица теряет свою энергию порциями 10-30 эВ и переводит некоторые ферменты в активное состояние, что даёт начало некоторым химическим процессам и активизирует клеточные функции. (Например, для зрения животных порог активизации ретинальных клеток составляет 1-3 фотона видимого излучения). Все реакции клеток в организме интегрируются в центральной нервной системе, вероятно, это происходит в гипоталамусе. Далее наступает реакция всего организма. Возможно, такой ответ организма подобен общему возбуждению при стрессах.

На рис.1.9 представлена дозовая зависимость риска заболевания раком. Известный диапазон показан с разбросом вне круга, неизвестный – внутри круга. Кривая «в» показывает порог в районе 50 мЗв, ниже которого опасность возникновение рака или других заболеваний, вызванных радиацией, не существует. Оценить риск в диапазоне 1-5 мЗв трудно, так как эти дозы находятся в пределах природного радиационного фона.

46


Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее