ЛЕКЦИЯ 06 (Электронные лекции)

2017-12-22СтудИзба

Описание файла

Файл "ЛЕКЦИЯ 06" внутри архива находится в папке "Электронные лекции". Документ из архива "Электронные лекции", который расположен в категории "". Всё это находится в предмете "методы и техника медико-биологических исследований" из 10 семестр (2 семестр магистратуры), которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "методы и техника медико-биологических исследований" в общих файлах.

Онлайн просмотр документа "ЛЕКЦИЯ 06"

Текст из документа "ЛЕКЦИЯ 06"

ЛЕКЦИЯ 6

ОПТИЧЕСКИЕ РЕЗОНАТОРЫ СО СФЕРИЧЕСКИМИ

ЗЕРКАЛАМИ. ТЕОРИЯ ГАУССОВЫХ ПУЧКОВ

6.1. Симметричный конфокальный резонатор.

Итак, в работе Фокса и Ли [1] было показано, что хотя в резонаторах типа Фабри-Перо возможны устойчивые конфигурации поля с учетом дифракционных потерь, распределение фазы собственных типов колебаний по плоской поверхности не соответствует форме этой поверхности. Авторы работы сделали естественный шаг: рассчитали аналогичным образом резонаторы со сферическими зеркалами, где фазовые искажения на вогнутой сферической поверхности оказались заметно меньше, чем на плоской. Поэтому среди выводов работы, наряду с заключением, что однородные плоские волны не являются нормальными модами открытых резонаторов, прозвучала рекомендация к использованию вогнутых зеркал сферической формы.

Кроме того, в пользу сферических зеркал говорят и чисто практические доводы, поскольку технология изготовления сферических поверхностей оптического качества хорошо отработана по сравнению с поверхностями другой формы кривизны. Отметим, однако, что и принципиальные соображения даже без утомительных численных расчетов обращают внимание именно на сферические зеркала. Во-первых, всякое отличие от плоской поверхности в первом приближении описывается проще всего именно как сфера. Во-вторых, вогнутое сферическое зеркало обладает фокусирующими свойствами и собирает внутрирезонаторный пучок «поближе» к оптической оси, тем самым снижая чувствительность резонатора к разъюстировкам.

Эти соображения, конечно, сами по себе достаточно примитивны, и ниже мы обоснуем выбор сферической формы зеркал с гораздо более фундаментальных позиций, но даже и здесь очевидно, что устойчивость резонатора, или критичность его к разъюстировкам, существенно зависит от выбора кривизны зеркал. Следовательно, для описания таких резонаторов к поперечным размерам зеркал и расстоянию между ними добавятся радиусы кривизны r1 и r2 (рисунок 6.1).


Рисунок 6.1. Резонатор со сферическими зеркалами.

После выхода в свет работы Фокса и Ли количество работ, посвященных оптическим резонаторам, стало лавинообразно нарастать. Так, в одной из первых публикаций Бойдом и Гордоном [2] было показано, что в случае симметричного конфокального резонатора (r1 = r2 = l) интегральное уравнение, описывающее поле в резонаторе, может быть решено аналитически. Распределение собственных типов колебаний по поверхности зеркал такого резонатора описывается сфероидальными функциями:

Umn(ξ,η)=S0m(2πN,ξ)S0n(2πN, η), (6.1)

где ξ=х/a, η=y/a, N=a2/λl.

Поскольку собственные функции действительны, отражающие поверхности зеркал являются поверхностями постоянной фазы, то есть совпадают с волновым фронтом собственных типов колебаний.

Мнимая часть собственного значения равна

Im(lnγmn) = (kl+αmn) = - (m+n+1)π/2+kl, (6.2)

т. е. фазовый сдвиг за один проход, вычитаемый из геометрического фазового сдвига, равен

αmn = (m+n+1)π/2 (6.3)

и не зависит от числа Френеля.

Собственные частоты резонатора определяются выражением

ν mnq = c/4l(2q+1+m+n). (6.4)

Таким образом, спектр собственных частот симметричного конфокального резонатора сильно вырожден, а минимальный интервал частот между соседними модами равен с/4l.

Это, в частности, облегчает задачу реализации одночастотного режима работы лазера.

В наиболее распространенном случае больших чисел Френеля (N>>1) функции, описывающие поперечное распределение поля по поверхности зеркала вдоль каждой из координат, могут быть описаны в виде произведения функции Гаусса на полиномы Эрмита:

(6.5).

Первые три полинома Эрмита записываются, как известно [3], в виде:

Н0(х)=1; Н1(х)=2х; Н2(х)=2(х2-1). (6.6)

Так же, как в случае резонаторов с плоскими зеркалами, индекс в функции um показывает число нулей в распределении.

Следует отметить, что по мере удаления от оси резонатора наибольший вклад в распределение вносит экспонента функции Гаусса, описывающая сильное уменьшении амплитуды поля. Распределение основной моды (m = 0) просто описывается функцией Гаусса, без всяких полиномов Эрмита.

Таким образом, для собственных типов колебаний потери в конфокальном резонаторе оказываются меньше, чем в резонаторе с плоскими зеркалами таких же поперечных размеров. Зависимость потерь мощности за один проход от числа Френеля N для конфокального резонатора представлена на рисунке 6.2 [2].


Следует также отметить, что в симметричном конфокальном резонаторе создаются гораздо лучшие условия для селекции низшей моды, чем в резонаторе с плоскими зеркалами. Действительно, в районе N≈ 0,5 потери основной моды малы и существенно ниже потерь мод более высоких порядков.

Интересно, что в показатель экспоненты входит величина 2=x2/, не зависящая от размеров зеркал. Поэтому при изменении поперечного размера зеркал величина освещенного пятна меняться не будет (не следует забывать, однако, что это справедливо при достаточно больших значениях числа Френеля).

Для основной моды радиус освещенного пятна на зеркале, соответствующий уменьшению амплитуды поля в е раз будет равен:

. (6.7)

Соответственно диаметр пятна на зеркале, при котором мощность падает вдвое, равен:

. (6.8)

Если излучение основной моды выходит из резонатора через частично прозрачное зеркало, то диаграмма направленности может быть рассчитана из распределения поля на зеркале. Такой расчет приводит к следующему значению ширины диаграммы направленности по уровню половинной мощности :

(6.9).

Можно проследить за перемещением поверхности постоянной фазы в пространстве. При этом уравнение для синфазной поверхности, пересекающей ось резонатора в точке z0, имеет вид

(6.10)

В пределах принятого приближения это уравнение описывает сферическую поверхность с радиусом кривизны

(6.11)

При z0 = ±l/2 поверхности совпадают с поверхностями зеркал исходного резонатора. Видно, что синфазной является и фокальная плоскость зеркал

z 0= 0.

В любой плоскости z = z0 радиус пятна основной моды по уровню 1/e равен:

(6.12)

Наименьший размер пятна получается в фокальной плоскости (перетяжка) и равен

(6.13)

6.2. Гауссовы пучки.

Расчет поля в оптических резонаторах был после Фокса и Ли проведен многими авторами для различных типов резонаторов. Устойчивые конфигурации мод, описываемые функциями различной сложности, отличались той общей закономерностью, что имели к краям зеркал обязательный спад амплитуды и интенсивности по Гауссу. Стремление получить аналитические выражения для распределения поля в резонаторе привело как зарубежных, так и отечественных авторов к формулам, дающим функции типа Фокса и Ли без расчета на ЭВМ.

В
частности, практически одновременно с работой Бойда и Гордона, получивших аналитическое решение для круглых сферических зеркал, появилась серия работ Л.А. Вайнштейна [4…7], где в асимптотическом виде были получены все результаты, аналогичные Фоксу и Ли, без численных расчетов. С подачи Вайнштейна сформировалось целое новое направление в теоретической оптике — квазиоптика, позволившая представить все процессы, связанные с распространением лучей (т.е. геометро-оптические явления) с чисто волновой точки зрения.

Однако квазиоптика как таковая ушла в сторону от резонаторов, а в самой теории резонаторов ощущалась определенная концептуальная незавершенность. Именно, упорная «похожесть» устойчивых распределений поля в различных резонаторах в виде гауссовых «крыльев» при удалении от оптической оси заставила заподозрить наличие некоего общего принципа, позволяющего говорить не о формировании в пространстве распределения поля благодаря той или иной системе зеркал, а о существовании предельной конфигурации поля, которой та или иная система зеркал в большей или меньшей степени соответствуют. Впервые такая точка зрения на оптические р
езонаторы была разработана Когельником [8].

В этом понимании проблемы открытых резонаторов наличие идеальной конфигурации поля диктует конкретную систему зеркал, реализующую по возможности более близкий к идеальному пучок излучения. Ситуация, с одной стороны, напоминает центральную предельную теорему из теории вероятностей, с другой — квантовомеханическую задачу о минимизирующем соотношение неопределенностей волновом пакете.

На общие соображения относительно предельной конфигурации поля наталкивает даже простейший случай резонатора с плоскими зеркалами. Поле в таком резонаторе представляется в виде квазиплоской волны:

где . Отличие от плоской волны в том, что А const, почему и появляется приставка «квази».

Скорость, с которой перемещается максимум амплитуды (групповая скорость):

при = ck.

Представим амплитуду A(z,t) в виде интеграла:

(6.14)

и в случае квазиплоской волны ограничимся двумя членами разложения:

(6.15)

Найдем интенсивность:

(6.16)

т.е. к гауссовой форме J(x) приводит уже допущение о возможности обрыва ряда на втором члене. Но, вспоминая смысл соотношения неопределенностей, эта возможность означает, что волновой пакет по мере распространения расплывается минимально, т.е.: (x – поперечная координата).

Применим теперь требование минимизации соотношения неопределенностей уже не к «чисто» квазиплоской волне, а к волновому пакету общего вида.

Пусть волновой пакет распространяется вдоль оси z, причем без ограничения общности (осесимметричный случай) можно полагать в поперечном направлении только одну координату x .

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее