Главная » Все файлы » Просмотр файлов из архивов » Документы » 6 Влияние температурного поля на свойства сварного соединения

6 Влияние температурного поля на свойства сварного соединения (Раздаточный материал)

2018-12-12СтудИзба

Описание файла

Документ из архива "Раздаточный материал", который расположен в категории "". Всё это находится в предмете "технология конструкционных материалов (ткм)" из , которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "технология конструкционных материалов (ткм)" в общих файлах.

Онлайн просмотр документа "6 Влияние температурного поля на свойства сварного соединения"

Текст из документа "6 Влияние температурного поля на свойства сварного соединения"

ВЛИЯНИЕ ТЕМПЕРАТУРНОГО ПОЛЯ ИСТОЧНИКА ТЕПЛОТЫ НА СВОЙСТВА СВАРНОГО СОЕДИНЕНИЯ

Под действием температурного поля источника теплоты в металле сварного соединения происходят физико-химические и термодеформационные процессы.

I. ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ при сварке характеризуются фазовыми и структурными превращениями. Полнота и степень этих превращений зависит от параметров сварочного термического цикла и химического состава материала

1. К фазовым превращениям, х относятся :

а - полиморфные превращения (образование в зависимости от скорости охлаждения перлита, сорбита, троостита, бейнита и мартенсита) ( рис. 31С);

б - растворение (при нагреве) и выделение (при охлаждении) новых фаз при изменении растворимости примесей.

2. К структурным превращениям относятся :

а - рост зерна в условиях сварочного термического цикла (рис. 32С);

б - рекристаллизация (рост новых зерен в области низких температур).



Полиморфные превращения

Для анализа полиморфных превращений, происходящих в сталях при сварке, пользуются диаграммой анизотермического (в условиях непрерывного охлаждения) распада аустенита. На этой диаграмме по вертикальной оси откладывают температуры, а по горизонтальной – время. Пунктирная прямая, проведенная при температуреА1, служит границей устойчивого аустенита.

Рис. 31С. Диаграмма анизотермического распада аустенита

А1 – температура начала распада аустенита; Мн – температура начала мартенситного превращения; Мк – температура окончания мартенситного превращения; W1; W2; W3; W4; W5; - скорости охлаждения аустенита; WК – критическая скорость охлаждения - минимальная скорость охлаждения, при которой из аустенита образуется мартенсит и остаточный аустенит (~ 5%).

Процессы распада аустенита подразделяют на два типа.

1. Диффузионные - перлитное и промежуточное (бейнитное).

2. Бездиффузионное - мартенситное.

Свойства и строение продуктов превращения аустенита зависят от скорости охлаждения, при которой происходит процесс его распада. При малых скоростях охлаждения получается достаточно грубая смесь феррита и цементита (перлит). При более высоких скоростях охлаждения дисперсность структур возрастает и твердость продуктов повышается.

Перлит, сорбит, тростит, бейнит и мартенсит – структуры с одинаковой природой (феррит + цементит), которые отличаются степенью дисперсности феррита и цементита, а также степенью пересыщенности феррита углеродом.

Бейнитное превращение происходит при температурах нижеА1, но выше температуры начала образования мартенсита Мн. Бейнит - смесь феррита и цементита, полученная в результате распада аустенита. Содержание углерода в бейните может составлять 0,1 -0,2%

Мартенситное превращение происходит только в том случае, когда при при высоких скоростях охлаждения аустенит переохлаждается до низких температур, при которых диффузионные процессы становятся невозможными. Превращение носит бездиффузионный характер, не сопровождается перераспределением атомов углерода и железа и поэтому весь углерод аустенита остается в мартенсите. Если в равновесном состоянии растворимость углерода в феррите не превышает 0,002 %, то его содержание в мартенсите может достигать 2,14 %, т.е. как в исходном аустените. В результате такого превращения аустенита образуется продукт закалки – мартенсит. Мартенсит, являясь твердой и хрупкой фазой, снижает пластичность металла и может привести к образованию холодных трещин в шве и зоне термического влияния см. Дефекты сварных соединений).

Конкретные значения А1, Мн, Мк и скоростей охлаждения, при которых образуется перлит, сорбит, троостит, бейнит и мартенсит различны для разных материалов, и зависят от химического состава стали. Например: для сталей с содержанием углерода выше 0,6 % Мк уходит в область отрицательных температур.



Рост зерна в условиях сварочного термического цикла

Размер зерна зависит от химического состава стали, максимальной температуры нагрева Тмах и времени пребывания (t ирз) выше температуры интенсивного роста зерна (Тирз)

Р
ис. 32С. Размер зерна в зависимости от химического состава стали и времени пребывания выше температуры интенсивного роста зерна.
Максимальная температура нагрева Тмах = 1350 0С; t ирз дано в логарифмической шкале.

Чем больше t ирз, тем больше размер (площадь) зерна. Образование крупнозернистой структуры приводит к снижению пластичности металла и может стать причиной образования трещин в сварном шве, околошовной зоне и участке перегрева зоны термического влияния сварного соединения.



Влияние термического цикла сварки на структуру и свойства различных зон сварного соединения

В условиях сварки различные точки сварного соединения имеют различные сварочные термические циклы, отличающиеся по значениям максимальной температуры нагрева, времени пребывания в области высоких температур, скорости охлаждения. Следствием такого своеобразного термического воздействия является то, что в сварном соединении, в зависимости от химического состава свариваемого металла и режимов процесса сварки, можно получить слои металла, значительно отличающиеся друг от друга по фазовому составу, структурному состоянию, а следовательно и механическим свойствам (рис. 33С).

Рис. 33С. Схема строения зоны термического влияния сварного соединения при однослойной дуговой сварке низкоуглеродистой стали с содержанием углерода С=0,2%. Тпл – температура плавления; Тл – температура ликвидус; Тс – температура солидус; Ж – жидкость; А – аустенит; Ф – феррит; П – перлит; Ц – цементит; Ц2 – цементит вторичный; Ц3 – цементит третичный.

Зона наплавленного металла (сварной шов) – перемешанный в жидком состоянии с основным металлом материал электрода или присадочной проволоки (например: при сварке плавящимся электродом или при сварке неплавящимся электродом с присадкой соответственно) или только расплавленный основной металл ( например: при сварке неплавящимся электродом без присадки). Этот участок, кристаллизуясь, образует сварной шов. Сварной шов имеет литую структуру, состоящую из столбчатых кристаллов. Грубая столбчатая структура металла шва является неблагоприятной, так как снижает прочность и пластичность металла.

1. Участок неполного расплавления (околошовная зона ОШЗ) - переходный от наплавленного металла к основному. На этом участке происходит образование соединения и проходит граница сплавления, Он представляет собой очень узкую область (0,1—0,4 мм) основного металла, нагретого до частичного оплавления зерен. Здесь наблюдается значительный рост зерен, скопление примесей, поэтому этот участок обычно является наиболее слабым местом сварного соединения с пониженной прочностью и пластичностью. Температура участка в среднем составляет 1530- 1470 °С.

2. Участок перегрева  — область сварного соединения, нагреваемая в среднем до температур 1470 — 1100 °С, в связи с чем металл отличается крупнозернистой структурой и пониженными механическими свойствами (пластичностью и ударной вязкостью). Эти свойства тем ниже, чем крупнее зерно и шире зона перегрева. Ширина участка 2 составляет примерно 0,2… 4 мм.

3. Участок нормализации  — область сварного соединения, нагреваемая в среднем до 900... 1100 °С. Благодаря мелкозернистой структуре механические свойства металла на этом участке выше по сравнению с основным металлом. Ширина участка составляет примерно 0,2...4 мм.

4. Участок неполной перекристаллизации  — область сварного соединения, нагреваемая в среднем до 700...900 °С. В связи с неполной перекристаллизацией, вызванной недостаточным временем и температурой нагрева, структура этого участка характеризуется смесью мелких перекристаллизовавшихся зерен и крупных зерен, которые не успели перекристаллизоваться. Металл этого участка имеет более низкие механические свойства, чем металл предыдущего участка. Ширина его составляет примерно 0,3…3 мм.

5. Участок рекристаллизации — область сварного соединения, нагреваемая до 500...700 °С. Если сталь перед сваркой испытала холодную деформацию (прокатку, ковку, штамповку), то на этом участке развиваются процессы рекристаллизации, приводящие к росту зерна, огрублению структуры и, как следствие, к разупрочнению. Ширина участка составляет примерно 0,3…5 мм.

6. Участок старения — область сварного соединения, нагреваемая до 300 — 500 °С. Этот участок является зоной перехода от зоны термического влияния к основному металлу. В этой зоне могут протекать процессы старения из-за выпадения карбидов железа и нитридов, в связи с чем механические свойства металла этой зоны понижаются. Ширина участка составляет примерно 0,4…6 мм

Участки 1,2,3,4,5,6 – составляют зону термического влияния (ЗТВ)

7. Основной металл, который не претерпевал заметных изменений в процессе сварки.

Ширина зоны термического влияния зависит от вида, способа и режимов сварки. Чем меньше тепловое воздействие на металл источника теплоты, тем уже зона термического влияния. При электрошлаковой сварке ЗТВ составляет обычно 25 мм и более; при газовой сварке — 15-20 мм; ручной дуговой сварке 3 — 6 мм, при сварке под флюсом средних толщин — около 10 мм; при сварке в защитных газах - 1 – 3 мм; при лазерной и электронно-лучевой – десятые доли миллиметра. Как правило, чем выше скорость нагрева и охлаждения свариваемого изделия, тем меньше размеры зоны термического влияния.

МЕРОПРИЯТИЯ, НАПРАВЛЕННЫЕ НА УЛУЧШЕНИЯ КАЧЕСТВА ЗОНЫ ТЕРМИЧЕСКОГО ВЛИЯНИЯ

Работоспособность сварного соединения в основном зависит от свойств зоны термического влияния. Под тепловым воздействием сварочного процесса может наблюдаться ухудшение свойств металла этой зоны по сравнению со свойствами основного металла, что в значительной мере снижает качество сварного изделия и может привести к его разрушению в процессе эксплуатации.

Такие факторы, как протяженная зона термического влияния, образование закалочных структур (мартенсит) и рост зерна существенно снижают качество сварного соединения. Эти факторы зависят от вида сварки и параметров термического цикла сварки.

1. Вид сварки

По степени уменьшения размеров зоны термического влияния основные виды и способы сварки можно расположить в следующей последовательности: электрошлаковая, газовая, автоматическая дуговая под флюсом, ручная дуговая покрытыми электродами, дуговая в защитных газах, контактная, плазменная, электронно-лучевая, лазерная. Такое расположение является условным, так как величина зоны разогрева зависит от толщины свариваемых элементов и режимов сварки.

2. Параметры термического цикла сварки

Наилучшие результаты по обеспечению оптимального фазового состава структуры и размера зерна ЗТВ дает идеальный термический цикл (рис. 34С).

Рис. 34С. Термические циклы сварки

а – идеальный; б – при электродуговой сварке; в – при электронно-лучевой и лазерной сварке.

Тмах – максимальная температура нагрева; Тирз – температура интенсивного роста зерна.

Малое время пребывания выше Тирз сдерживает рост зерна, а медленное охлаждение снижает вероятность образования закалочных структур, что существенно улучшает качество ЗТВ.

Поэтому, при выборе видов и способов сварки предпочтение следует отдавать тем видам и способам, которые обеспечивают минимальную протяженность зоны термического влияния (например: сварка в среде защитных газов, лазерная и электронно-лучевая сварка).

Режимы сварочного процесса следует назначать такими, чтобы при условии качественного формирования сварного шва обеспечивались:

- минимальное время пребывания в области высоких температур околошовной зоны и зоны перегрева;

- низкие скорости охлаждения участков ЗТВ, претерпевающих полиморфные превращения.

Кроме того, в зависимости от склонности свариваемых сталей к образованию закалочных структур, необходимо предусматривать предварительный (до сварки), сопутствующий (во время сварки) и последующий (после сварки) подогрев, которые снижают скорость охлаждения участков ЗТВ.

II. ТЕРМОДЕФОРМАЦИОННЫЕ ПРОЦЕССЫ при сварке характеризуются возникновением сварочных деформаций и напряжений, которые являются причиной образования трещин, а также изменения формы и размеров сварного изделия

Напряжения и деформации

Любое силовое или температурное воздействие на тело сопровождается возникновением в нем напряжений и деформаций.

Напряжения

Деформации

Напряжение - сила, отнесенная к единице площади сечения тела: σ= P/F, где σ - напряжение, МПа; Р - действующее усилие, Н; F - площадь поперечного сечения детали, м2.

По причинам, их вызвавшим, различают внутренние и внешние напряжения.

Внешние напряжения, напряжения, возникающие в теле в результате приложения внешней нагрузки.

Собственные (внутренние) напряжения – напряжения, образующиеся без приложения к телу внешних сил. Причиной собственных (внутренних) напряжений является изменение внутреннего температурного состояния тела. Собственные (внутренние) напряжения возникают вследствие затрудненной свободной деформации при изменении объема тела, вызванного изменением температуры или (и) полиморфными превращениями.

Напряжения подразделяются на упругие и пластические.

Если уровень действующих напряжений меньше предела текучести металла, напряжения называются упругими, если равен или превышает предел текучести металла - пластическими.

Деформация - изменение размеров или формы тела в результате приложения внешних сил или изменения температурных условий.

По причинам, их вызвавшим, различают внутренние и внешние деформации.

Внешние деформации, деформации, возникающие в теле в результате приложения внешней нагрузки.

Собственные (внутренние) деформации – деформации, образующиеся без приложения к телу внешних сил. Причиной собственных (внутренних) деформаций является изменение внутреннего температурного состояния тела. Собственные (внутренние) деформации возникают вследствие изменения объема тела, вызванного изменением температуры или (и) полиморфными превращениями.

Деформации, как и напряжения, подразделяются на упругие и пластические.

Деформация называется упругой, если она исчезает после удаления причин, вызвавших её. Упругая деформация возникает в области напряжений, находящихся ниже предела текучести металла (точки начала текучести). Величина упругой деформации характеризуется относительным удлинением (для малоуглеродистых сталей не более 0,2%).

Деформация называется пластической, если она не исчезает (во всяком случае полностью) после удаления причин, вызвавших её. Пластическая деформация называется также остаточной. Пластическая (остаточная) деформация возникает в области напряжений, превышающих предел упругости и текучести металла.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее