Shpargalka_2 (Шпора в ворде)

2017-08-21СтудИзба

Описание файла

Файл "Shpargalka_2" внутри архива находится в папке "Шпора в ворде". Документ из архива "Шпора в ворде", который расположен в категории "". Всё это находится в предмете "математический анализ" из 1 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "математический анализ" в общих файлах.

Онлайн просмотр документа "Shpargalka_2"

Текст из документа "Shpargalka_2"

(лекция 1)

Определение функции нескольких переменных.

Переменная u называется f(x,y,z,..,t), если для любой совокупности значений (x,y,z,..,t) ставится в соответствие вполне определенное значение переменной u.

Множество совокупностей значение переменной называют областью определения ф-ции.

G - совокупность (x,y,z,..,t) - область определения .

Функции 2-х переменных.

Переменная z называется функцией 2х переменных f(x,y), если для любой пары значений (x,y) Î G ставится в соответствие определенное значение переменной z.

Предел функции 2-х переменных.

Пусть задана функция z=f(x,y), р(х,у)-текущая точка, р000)- рассматриваемая точка.

Опр. Окрестностью точки р0 называется круг с центром в точке р0 и радиусом r. r = Ö(х-х0)2+(у-у0)2Ø

Число А называется пределом функции |в точке р0, если для любого

Lim f(x,y)

pàp0

сколь угодно малого числа e можно указать такое число r (e)>0, что при всех значениях х и у, для которых расстояние от т. р до р0 меньше r выполняется неравенство: ½f(x,y) - А½<e, т.е. для всех точек р, попадающих в окрестность точки р0, с радиусом r, значение функции отличается от А меньше чем на e по абсолютной величине. А это значит, что когда точка р приблизится к точке р0 по любому пути, значение функции неограниченно приближается к числу А.

Непрерывность функции.

Пусть задана функция z=f(x,y), р(х,у)-текущая точка, р000)- рассматриваемая точка.

Опр. Функция z=f(x,y) называется непрерывной в т. р0, если выполняются 3 условия:

1)функция определена в этой точке. f(р0) = f(x,y);

2)ф-я имеет предел в этой точке.

Lim f(р) = b

pàp0

3)Предел равен значению функции в этой точке: b = f(x0,y0);

Lim f(x,y) = f(x0,y0);

pàp0

Если хотя бы 1 из условий непрерывности нарушается, то точка р называется точкой разрыва. Для функций 2х переменных могут существовать отдельные точки разрыва и целые линии разрыва.

Понятие предела и непрерывности для функций большего числа переменных определяется аналогично.

Функцию трех переменных невозможно изобразить графически, в отличие от функции 2х переменных.

Для функции 3х переменных могут существовать точки разрыва, линии и поверхности разрыва.

Частное производной.

Рассморим функцию z=f(x,y), р(х,у)- рассматриваемая точка.

Дадим аргументу х приращение Dх; х+Dх, получим точку р1(х+Dх,у), вычислим разность значений функции в точке р:

Dхz = f(p1)-f(p) = f(x+Dx,y) - f(x,y) - частное приращение функции соответствующее приращению аргумента х.

Опр. Частное производной функции z=f(x,y) по переменной х называется предел отношения частного приращения этой функции по переменной х к этому приращению, когда последнее стремится к нулю.

z = Lim Dxz

¶x Dx®0 Dx

à z = Lim f(x+Dx,y) - f(x,y)

x Dx®0 Dx

Аналогично определяем частное производной по переменной у.

Нахождение частных производных.

При определении частных производных каждый раз изменяется только одна переменная, остальные переменные рассматриваются как постоянные. В результате каждый раз мы рассматриваем функцию только одной переменной и частная производной совпадает с обычной производной этой функции одной переменной. Отсюда правило нахождения частных производных: частноя производная по рассматриваемой переменной ищется как обычная производнаяфункции одной этой переменной, остальные переменные расстатриваются как постоянные величины. При этом оказываются справедливыми все формулы дифференцирования функции одной переменной (производноя суммы, произведения, частного).

(Лекция № 2)

Полный дифференциал ф-ции 2-х переменных.

z=f(x,y) в области D.

p(x,y) Î D - рассматриваемая точка. Дадим х приращение Dх, у - Dу. Получим р1(х+Dх, у+Dу). Вычилим значение функции. Полным приращение функции называется разность:

Dz = f(p1)-f(p)

Dz = f(x+Dx,y+Dy) - f(x,y)

Опр. Полным дифференциалом функции z=f(x,y) называется главная линейная часть приращения этой функции, если приращение можно преобразовать к виду:

Dz = ADx + BDy + a

А, В - не зависят от Dх, Dу;

a - зависит от Dх и Dу и при этом

Lim a = 0

r®0 r

r - расстояние между точками р и р1

S = рр1 = ÖDх2 +Dу2Ø

a является бесконечно малой, более высокого порядка, чем r

При ументшении Dх и Dу a®0 быстрее, чем r. Из определения следует, что полный дифференциал функции равен

z = ADx + BDy

При малых Dх и Dу имеет место равенство Dz » dz.

Опр. Если функция z=f(x,y) имеет полный дифференциал в точке р, то она называется дифференцируемой в этой точке.

Теорема. Необходимые условия дифференцируемости функции.

Если функция z=f(x,y) дифференцируема в точке р, то она имеет частные производные в этой точке и при этом выражение поного дифференциала А = ¶z/¶x B = ¶z/¶y, т.е. полный дифференциал может быть записак в виде:

dz = z/x Dx + z/y Dy

Док-во: По определению дифференцируемости приращение функции может быть записано в виде:

Dz = ADx+BDy +a при любом Dх и Dу.

Рассмотрим 2 частных случая

1)Dх¹0 Dу = 0

При этом Dz=ADx+a /Dx и перейдем к пределу. Полное приращение функций превращается в частное приращение.

Lim Dxz/Dx = Lim A+a/Dx

Dx®0 Dx®0

¶z/¶x= A+Lim(Dx®0)a/Dx =0 т.к. r=Dх

В результате получаем А=¶z/¶x

2)Dx=0 Dy¹0

При этом аналогичным образом получим, что В=¶z/¶y

Теорема доказана. Как следствие à полный дифференциал дифференцируемой функции определяется по формуле:

dz=¶z/¶x·Dx+¶z/¶y·Dy, если при этом учесть, сто приращение независимых переменных х и у равны их дифференциалам Dx=dx, Dy=dy, то окончательно получим:

dz=z/x·dx+z/y·dy

Теорема 2. Достаточное услови дифференцируемости функции.

Если z=f(x,y) имеет в точке р(х,у) непрерывные частные производные, то она дифференцируема в этой точке, т.е. она имеет полный дифференциал.

Полный дифференциал для функций нескольких переменных.

Для функций многих переменный полный дифференциал определяется аналогично, при этом:

u=f(x,y,z,…,t)

du=u/x·dx+u/y·dy+u/z·dz+…+u/t·dt

Применение полного дифференциала для приближенных вычислений.

Пусть задана функция z=f(x,y) рассмотрим ее полное приращение.

Dz=f(x+Dx,y+Dy) - f(x,y)

При малых Dх и Dу à Dz»dz è

f(x+Dx,y+Dy) - f(x,y) » ¶z/x¶·Dx+¶z/¶y·dy®

f(x+Dx,y+Dy) » f(x,y)+z/x·dx+z/y·dy — формула для приближенных вычислений.

Эта формула позволяет вычислять приближенное значение функции в точке р1 по известному ее в точке р и значением ее частных производных в точке р. Чем меньше Dх и Dу, тем меньше погрешность.

Дифференцирование сложных функций.

Опр. Переменная z=z(t) - называется сложной функцией переменной t, если она определяется равенством:

z=z(t)=f[x(t),y(t)] - сложная функция от t.

Теорема. Если функция z=f(x,y) дифференцируема в точке р(х, у), а функции x=x(t) и y=y(t) дифференцируемы в ссответствующей точке t, то сложная функция z=z(t) также дифференцируема в точке t и ее производная определяется равенством:

dz/dt = z/x·dx/dt+ x/y·dy/dt [**]

Док-во: Дадим переменной t приращение Dt, при этом х=х(t) получит приращение Dх, а у=у(t) à Dу, в результате переменная z=f(x,y) получит приращение Dz, т.к. z(х,у) - дифференцируемая функция, то это приращение может быть представлено в виде:

Dz=¶z/¶x·Dx + ¶z/¶y·Dy + a

разделим на Dt и перейдем к пределу

Lim(Dt®0)Dz/Dt = ¶z/¶x·Lim(Dt®0)Dx/Dt +

+ ¶z/¶y·Lim(Dt®0)Dy/Dt + Lim(Dt®0)a/Dt

dz/dt = ¶z/¶x·dx/dt + ¶z/¶y·dy/dt + Lim(Dt®0) a/r·r/Dt è 0

r=ÖDx2+Dy2Ø

Lim(Dt®0)a/r=0 - по определению дифференциала.

Lim(Dt®0)r/Dt = Lim(Dt®0)Ö(Dx/Dt)2+(Dy/Dt)2Ø=

=Ö(dx/dt)2+(dy/dt)2ع¥

Формула [**] доказана.

Рассмотрим частный случай сложной функции:

z= f[x,y(x)] = z(x)

в ф-ле [**] вместо tàх, получим

dz/dx= ¶z/¶x·dx/dx+ ¶z/¶y·dy/dx

dz/dx= z/x+ z/y·dy/dx [***]

Формула [**] распространяется на сложные функции большего числа переменных.

Пусть z=f(x,y), где x=x(r,s,..t), y=y(r,s,..,t) è z=z(r,s,..,t) - cложная функция.

При этом формула [**] принимает вид:

z/r=z/x·¶x/r+x/y·¶y/r

z/s=z/x·¶x/s+ z/y·¶y/s [****]

Лекция №3

Дифференцирование функций, заданных неявно.

Опр. Функция z=f(x,y) наз. Заданной неявно, если она определена равенством, неразрешенным относительно z .

F(x,y,z)=0

x+y+z=ez - это равенство задаем некоторую функцию z=f(x,y), которую нельзя выразить в полном виде.

x2+y2+z2=0 - не задает никакой функции.

Теорема: Если ф-я F(x,y,z) - непрерывна в т. р0(x0,y0,z0) и ее производная по z Fz(x,y,z)¹0, то равенство F(x,y,z)=0 однозначно определяет в неявном виде функцию z=f(x,y), при этом эта функция дифференцируема и ее производная находится по формулам:

z/x=- F¢x(x,y,z)/F¢z(x,y,z)

z/y=-F¢z (x,y,z)/F¢y(x,y,z)

Док-во: Найдем полный дифференциал функции

dF(x,y,z)=¶F/¶x*dx+¶F/¶y*dy+¶F/¶x*dz

F(x0,y0,z0)=0èdF=0è

¶F/¶x*dx+¶F/¶y*dy+¶F/¶x*dz=0

dz=-(¶F/¶x)/(¶F/¶z)*dx-(¶F/¶y)/(¶F/¶z)*dy (*)

С другой стороны:

z=f(x,y), dz=¶z/¶x*dx+¶z/¶y*dy (**)

Сравнивая (*) и(**) è

z/x=- F¢x(x,y,z)/F¢z(x,y,z)

z/y=-F¢z (x,y,z)/F¢y(x,y,z)

Частные производные высшего порядка.

Пусть задана функция 2х переменных z=f(x,y),найдем ее частные производные.

¶z/¶x=f¢x(x,y)

¶z/¶y=f¢y(x,y)

В общем случае, эти производные также являются функциями 2х и можно искать их частные производные. При этом получаем часные производные 2-ого и более порядков.Производные, в которых дифференцирование производится по разным переменным, называются смешанными.

Теорема: О независимости часных производных от порядка (последовательности) дифференцирования.

Две смешанные частные роизводные одного порядка, отличающиеся только порядком диф-я равны.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5168
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее