Termekh_shpory (Термех шпоры)

2017-08-19СтудИзба

Описание файла

Документ из архива "Термех шпоры", который расположен в категории "". Всё это находится в предмете "теоретическая механика" из 2 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "теоретическая механика" в общих файлах.

Онлайн просмотр документа "Termekh_shpory"

Текст из документа "Termekh_shpory"

Билет №1.

  1. Векторный способ задания движения точки. Траектория, скорость, ускорение точки.

  2. Эквивалентность пар. Сложение пар. Условие равновесия системы пар сил.

1. Векторная система координат.

Положение точки М определено, если радиус-вектор r из центра О выражен функцией времени t r= r(t)  задан способ определения модуля вектора и его направления, если имеется система координат. Скорость и ускорение:

tr(t), тогда

(t+Δt)r(t+Δt), получаем

Δr= r(t+Δt)-r(t) 

Vсрr/Δt. V=lim(Δr/Δt)=dr/dt.

aсрV/Δt. a=lim(Δv/Δt)=dV/dt= d²r(t)/dt².

Переход от векторной формы к координатной:

r(t)=x(t)i+y(t)j+z(t)k.

Обратно:

x=r(t)×i, y=r(t)×j, z=r(t)×k.

2. Эквивалентность пар. Сложение пар. Условия равновесия пар сил.

Эквивалентность: А) 2 пары, имеющие равные моменты, эквивалентны. Пару сил можно перемещать, поворачивать в плоскости действия, перемещать в параллельную плоскость, менять одновременно силу и плечо.

Б) 2 пары, лежащие в одной плоскости, можно заменить на одну пару, лежащую в той же плоскости с моментом, равным сумме моментов этих пар.

M=M(R,R’)=BA×R=BA×(F1+F2)=BA×F1+BA×F2. При переносе сил вдоль линии действия момент пары не меняется  BA×F1=M1, BA×F2=M2, M=M1+M2.

СЛОЖЕНИЕ. 2 пары, лежащие в пересекающихся плоскостях, эквивалентны 1 паре, момент которой равен сумме моментов двух данных пар.

Дано: (F1, F1’), (F2, F2’)

Доказательство:

Приведем данные силы к плечу АВ – оси пересечения плоскостей. Получим пары:

(Q1,Q1’) и (Q2,Q2’). При этом M1=M(Q1,Q1’)=M(F1, F1’),

M2=M(Q2,Q2’)=M(F2, F2’).

Сложим силы R=Q1+Q2, R=Q1’+Q2’. Т. к. Q1’= - Q1, Q2’= - Q2R= -R’. Доказано, что система двух пар эквивалентна системе (R,R’). M(R,R’)=BA×R=BA×(Q1+Q2)= BA×Q1+BA×Q2=M(Q1,Q1’)+ M(Q2,Q2’)=M(F1,F1’)+ M(F2,F2’)  M=M1+M2.

УСЛОВИЯ РАВНОВЕСИЯ:

Система находится в равновесии, если суммарный момент всех пар сил, действующих на тело, равен нулю.

M1+ M2+…+ Mn=0.

Билет №2.

  1. Координатный способ задания движения точки (прямоугольная декартова система координат). Траектория, скорость, ускорение точки.

  2. Аксиомы статики.

1. Декартова система координат.

Вектор r можно разложить по базису I, j, k: r=xi+yj+zk.

Движение материальной точки полностью определено, если заданы три непрерывные и однозначные функции от времени t: x=x(t), y=y(t), z=z(t), описывающие изменение координат точки со временем. Эти уравнение называются кинематическими уравнениями движения точки. Радиус-вектор r является функцией переменных x, y, z, которые, в свою очередь, являются функциями времени t. Поэтому производная r׳(t) может быть вычислена по правилу

dr/dt=∂r/∂x∙dx/dt+∂r/∂y∙dy/dt+∂r/∂z∙dz/dt.

Отсюда вытекает, что v=vxi+vyj+vzk.

V=√(vx²+vy²+vz²)

Ускорением точки в данный момент времени назовем вектор а, равный производной от вектора скорости v по времени. А=x׳׳(t)I+y׳׳(t)j+z׳׳(t)k.

А=√((x׳׳(t))²+(y׳׳(t))²+(z׳׳(t))²)

2. Аксиомы статики.

  1. 2 силы, приложенные к абс. твердому телу будут эквивалентны 0 тогда и только тогда, когда они равны по модулю, действуют на одной прямой и направлены в противоположные стороны.

  2. Действие данной системы сил на абсолютно твердое тело не изменится, если к ней добавить или отнять систему сил, эквивалентную 0 => точку приложения силы можно переносить вдоль линии её действия.

  3. Если к телу приложены 2 силы, исходящие из одной точки, то их можно заменить равнодействующей (любую силу можно разложить на составляющие бесконечное число раз).

  4. Силы взаимодействия двух тел равны по модулю и противоположны по направлению.

Действие связей можно заменить действием сил – реакций связи.

Билет №3.

  1. Естественный способ задания движения точки. Траектория, скорость, ускорение точки.

  2. Алгебраический и векторный момент силы относительно точки.

1. Естественный способ.

Если задана траектория движения точки, выбрано начало и положительное направление отсчета и известна S=S(t) зависимость пути от времени, то такой способ задания движения точки называется естественным. V=dr/dt∙dS/dS=S׳(t)∙dr/dS=S׳(t)∙τ= =vττ. Dr/dS=τ. Τ направлена всегда в «+» направлении отсчета S.

A=dv/dt=S׳׳(t)∙τ+S׳(t)∙dτ/dt=S׳׳∙τ+ (S׳)²n/ρ. Aτ=S׳׳-тангенциальное ускорение, an=(S׳)²/ρ-нормальное (центростремительное) ускорение, ρ-радиус кривизны.

A=√((aτ)²+(an)²).

2. Векторный и алгебраический момент пары сил.

Алгебраический момент M=F∙d (пара). M=dF1=dF2=2SΔABC= Sٱ. Он не меняется при перемещении сил вдоль линии их действия (ни плечо, ни направление вращения не меняются).

Векторный момент – вектор M=M(F,F), направлен перпендикулярно плоскости пары в ту сторону, откуда видно стремление пары повернуть тело против часовой хода стрелки, его модуль равен алгебраическому моменту пары.

M(F1,F2)=BAxF1=ABxF2.

Моменты относительно точки.

Алгебраическим моментом силы F относительно точки О называется взятое со знаком «+» или «-» произведение |F| на её плечо: MO(F)=Fh=2SΔOAB MO(F). «+» - против часовой стрелки. Характеризует вращательный эффект F.

Свойства:

А) Не меняется при переносе точки приложения вдоль линии действия силы. (т.к. |F|sinα= const).

Б) Ь=0 если т. О лежит на линии действия силы.

Плоскость действия M – через F и O.

Векторный момент силы F относительно точки О – вектор MO(F)=rxF (r – радиус- вектор из А в О). |MO(F)|=|F|∙|r|∙sinα=Fh.

i j k

MO(F)= xA yA zA =>

Fx Fy Fz

  • MOx(F)=yFz-zFy

  • MOy(F)=zFx-xFz

MOz(F)=xFy-yFx

Билет №4.

  1. Координатный способ задания движения точки (полярная система координат). Траектория, скорость, ускорение точки.

  2. Пара сил. Теорема о сумме моментов сил, составляющих пару, относительно произвольной точки.

1. Полярные координаты

Ox – полярная ось, φ – полярный угол, r – полярный радиус. Если задан закон r=r(t), φ=φ(t), то задано движение в полярной системе координат. Пусть r=rºr, rº - единичный вектор, pº┴rº - единичный вектор. Тогда v=dr/dt=r׳rº+

rdrº/dt=r׳rº+rφ׳pº=vrrº+vppº. vp и vr – трансверсальная и радиальная составляющая скорости. A=dv/dt=d(r׳rº+rφ׳pº)/ dt=r׳׳rº+r׳drº/dt+r׳φ׳pº+rφ׳׳pº+rφ׳∙

dpº/dt=(r׳׳-(rφ׳)²)rº+(rφ׳׳+2r׳φ׳)pº= arrº+appº.

r²=x²+y², φ=arctg(y/x).

vr=r׳=(xvx+yvy)/r,

vp=rφ׳=(xvy-yvx)/r

2. Т. о приведении произвольной системы сил к силе и паре сил.

Теорема Пуассо: Произвольная система сил, действующих на твердое тело, можно привести к какому-либо центру О, заменив все действующие силы главным вектором системы сил R, приложенным к точке О, и главным моментом MO системы сил относительно точки О.

Доказательство:

Пусть О – центр приведения. Переносим силы F1, F2,…,Fn в точку О: FO= F1 +F2+…+Fn= ∑Fk. При этом получаем каждый раз соответствующую пару сил (F1,F1”)…(Fn,Fn”), Моменты этих пар равны моментам этих сил относительно точки О. M1=M(F1,F1”)=r1xF1=MO(F1). На основании правила приведения систем пар к простейшему виду MO=M1+…+M2=∑MO(Fk)= ∑rkxFk => (F1, F2,…,Fn) ~ (R,MO) (не зависит от выбора точки О).

Билет №5.

  1. Определение скорости точки при задании ее движения в криволинейных координатах.

  2. Момент силы относительно оси.

1. Скорость точки в криволинейных координатах.

V=dr/dt=(∂r/∂q1)∙dq1/dt+(∂r/∂q2)∙dq2/dt+(∂r/∂q3)∙dq3/dt.

v=(dq1/dt)H1e1+(dq2/dt)H2e2+(dq3/dt)H3e3.

v=√(dq1/dt)²H1²+(dq2/dt)²H2²+(dq3/dt)²H3². vq1=(dq1/dt)H1, vq2=(dq2/dt)H2, vq3=(dq3/dt)H3.

Пример: 1) скорость в цилиндрической системе.

Т.к. x=ρcosφ, y=ρsinφ, z=z, то

H1=1, H2=ρ, H3=1.

vρ=dρ/dt, vφ=ρdφ/dt, vz=dz/dt.

2) Движение по винтовой.

ρ=R=const, φ=kt, z=ut.

vρ=0, vφ=kR, vz=u.

2. Момент силы относительно оси.

Момент силы относительно оси – алгебраический момент проекции этой силы на ось, перпендикулярную оси z, взятого относительно точки A пересечения оси с этой плоскостью. Характеризует вращательный эффект относительно оси.

Mz(F)=2SΔABC=F∙h.

Если Mz(F)=0, то сила F либо параллельна оси z, либо линия её действия пересекает ось z.

Билет №6.

  1. Понятие о криволинейных координатах. Координатные линии и координатные оси.

  2. Основные виды связей и их реакции.

1. Криволинейные координаты.

Устанавливают закон выбора 3 чисел q1, q2, q3. q1, q2, q3 – криволинейные координаты. Функция координат: r=r(q1,q2,q3) (из точки О).

Возьмем точку М0 с координатами q1,q10,q20.

X=X(q1,q20,q30);

Y=Y(q1,q20,q30);

Z=Z(q1,q20,q30);

Определяют кривую (переменная только q1). Кривая – координатная линия, соответствующая изменению q1 (аналогично q2 и q3). Касательные к координатным линиям, проведенные в точке M0 в сторону возрастания соответствующих координат – координатные оси: [q1], [q2], [q3].

H1=

Коэффициент Ламе.

e1=(∂r/∂q1)/H1.

Аналогично Н2, Н3, е2, е3.

2. Виды связей и их реакции.

Связи – ограничения, накладываемые на свободное твердое тело (занимает произвольное положение в пространстве). Реакция связи направлена в сторону, противоположную той, куда связь не дает перемещаться телу.

  1. Гладкая поверхность – по общей нормали.

  2. Нить – вдоль к точке закрепления.

  3. Сферический шарнир – по любому радиусу.

  4. Сферический шарнир – по любому радиусу.

  5. Подпятник, подшипник – любое направление.

Дополнительно:

А) Скользящий;

Б) Внутренний.

Билет №7.

  1. Число степеней свободы твердого тела в общем и частных случаях его движения.

  2. Лемма о параллельном переносе силы.

1. Число степеней свободы твердого тела

n=3N-k, где n-число степеней свободы, N-число точек, к-число связей. n =6-для свободного тв.тела

Для тела, кот-е совершает сферич.дв-е достаточно 3 коор-ты, поскольку оно имеет 3 степени свободы.

2. Лемма о параллельном переносе силы.

Сила, приложенная к какой-либо точке твердого тела, эквивалентна такой же силе, приложенной к любой другой точке тела, и паре сил, момент которой равен моменту данной силы относительно новой точки приложения.

Доказательство: пусть дана сила F. Приложим к какой-либо точке В систему F и F”.

|F|=|F|=|F|. F~(F,F,F”), т.к. (F’,F”) ~ 0, то

F ~ (F,F’,F”) ~ (F,F,F) ~ (F’,M(F,F”)).

Но M(F,F”)=BAxF=MB(F).

Получаем:

F ~ (F’,M(F,F”))

Ч. т. д.

Билет №8.

  1. Поступательное движение твердого тела. Число степеней свободы, уравнения движения. Скорости и ускорения точек тела.

  2. Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.

1. Поступательное движение.

Существует 5 видов движения – поступательное, вращательное вокруг неподвижной оси, плоское (плоскопараллельное), сферическое, общий случай. Поступательное движение твердого тела – движение, при котором любая прямая этого тела при движении остается параллельной самой себе.

Траектории любой точки тела, совершающего поступательное движение, одинаковы.

Радиус – вектор любой точки движущегося поступательно тела равен rB=rA+AB, AB=const. drB/dt=drA/dt+ dAB/dt=drA/dt => vB=vA, aB=aA

2. Связь между моментом относительно оси и относительно точки.

Момент силы F относительно оси z равен проекции на эту ось вектора момента силы F относительно произвольной точки О на этой оси.

Доказательство:

Пусть О – произвольная точка на оси z. Момент силы F относительно точки О перпендикулярен плоскости ОАВ

MO(F)┴(OAB). Пусть угол между MO(F) и осью z равен α. Тогда ПрzMO(F)=2SΔOAB= 2SΔOAB∙cosα => Mz(F) = |MO(F)|cosα.

Ч.т.д.

Билет №9.

  1. Вращение твердого тела вокруг неподвижной оси. Векторные и скалярные формулы для скоростей и ускорений точек тела.

  2. Теорема о приведении произвольной системы сил к силе и паре – основная теорема статики.

1. Вращение вокруг неподв. оси.

φ=φ(t) – угол поворота, n=1 степень свободы. Для задания вращения вокруг неподвижной оси необходимо выбрать ось, начало отсчета угла поворота и его положительное направление и задать зависимость угла поворота от времени. ω=dφ/dt – угловая скорость. ε=dω/dt= d²φ/dt² - угловое ускорение. Скорость любой точки тела, не лежащей на оси v=ωxr, ускорение a=dv/dt=(dω/dt)xr+ ωxdr/dt=εxr+ωx(ωxr), где aτ=εxr

Частные случаи: 1) ω=const – равномерное вращение (φ=φº+ωt ). 2) ε=const – равноускоренное вращение (ω=ωº+εt, φ=φº+ωt+ εt²/2)

2. Основная теорема статики (теор. Пуансо):

При приведении системы сил к заданому центру возникает главный вектор R равный сумме всех сил и главный момент Мо, равный сумме моментов всех сил относительно центра приведения.

R=Fk

Lo=Mo(Fk)

Билет №10.

  1. Плоское движение твердого тела. Уравнения плоского движения. Разложение плоского движения на поступательное движение вместе с полюсом и вращательное вокруг оси, проходящей через полюс.

  2. Инварианты системы сил. Частные случаи приведения системы сил к простейшему виду.

2. Инварианты системы сил. Частные случаи приведения.

Инвариант системы сил – векторные и скалярные величины, не зависящие от точки приведения системы сил.

  1. Главный вектор R=∑Fi=const.

  2. Скалярное произведение главного вектора и главного момента LOR=const=FxMx+ FyMy+FzMz.

Доказательство: Умножим обе части выражения (1) на R:

MO1R= MOR+(O1OxR)R  ПрR(LO1)= ПрR(LO)= LO1R∙ ∙cos(LO1^R)= LO2Rcos(LO2^R).

LO1xRx+ LO1yRy +LO1zRz =LO2xRx +LO2yRy +LO2zRz

Приведение к простейшему виду:

  1. MO=0, R0  к равнодействующей, равной R, проходящей через О.

  2. R=0, MO0  к паре с моментом MO (независимо от О).

R0, MO0, MO┴ R  к равнодействующей, равной R, проходящей через О1: ОО1=d= |MO| / |R|. Доказательство: R и пара сил с моментом MO лежат в одной плоскости 

 силы R и R” уравновешиваются, систему можно заменить равнодействующей R’.

  1. MOR0, R0, MO0, R не перпендикулярна MO – приводится к динаме.

Доказательство: Разложим MO на 2 составляющих: M1 и M2. M2 представим в виде пары сил R’ и R”. Силы R и R” уравновешиваются, а M1 перенесем в точку O1 (свободы).

В результате получили винт R’, M1, проходящий через точку О1.

Прямая, проходящая через точку О1 – ось динамы.

Билет №11.

  1. Соотношение между ускорениями двух точек плоской фигуры при плоском движении твердого тела.

  2. Равновесие тела с учетом трения скольжения. Законы Кулона.

1. Соотн. между уск. 2-х точек при плоском движении.

vB=vA+ωxAB.

aB=dvB/dt=dvA/dt+(dω/dt)xAB+ ωx(dAB/dt)=aA+εxAB+ωx(ωx

AB).

Считая, что εхАВ=(aBA)τ;

(aBA)n=ω²∙AB, окончательно получим:

aB=aA+(aBA)τ+(aBA)n

aA – ускорение полюса;

aBA – ускорение движения вокруг полюса.

2. Сила трения скольжения. Законы Кулона для Fтр.ск.:

1)Сила трения скольжения лежит в интервале 0 Fтр Fмах;

2) Сила трения скольжения не зависит от площади соприкасающихся тел, а зависит лишь от силы давления этого тела на поверхность

3)Сила тр.скольжения опр-ся по ф-ле: Fтр=fN, N-сила реакции опоры =Р, f-коэф-т трения скольжения

4)Коэф-т трения скольжения завис.от шероховатостей пов-тей трущихся тел, от температуры, от физич.состояния материала.

Билет №12.

  1. Мгновенный центр скоростей, способы нахождения МЦС.

  2. Равновесие тела с учетом трения качения. Коэффициент трения качения.

1. МЦС. Способы нахождения.

При плоском движении твердого тела в каждый момент времени существует точка, скорость которой равна нулю. vP=vO+vPO=0, vO=ω∙OP=>OP= vO/ω.

Способы нахождения:

  1. на основе физического условия задачи.

  2. На основе предваритель-ного определения скорости двух точек.

2. Трение качения. Коэффициент трения качения.

Круглое тело вдавливается в опорную поверхность (дуга CD). Трение качения – сопротивление, возникающее при качении одного тела по поверхности другого. Полная реакция N’ опорной поверхности препятствует качению.

Нам нужен момент сопротивления качению => заменим N’ и представим в виде Fтр. и N, приложенных в точке В, смещенной от центра на δ. Условия равновесия: N=P, F=Q. QmaxR=δN. Mтр.max=δ∙N. Момент сопротивления качению 0<Mк<Mк.max (не зависит от радиуса). Коэффициент трения качения δ при предельном состоянии равновесия (при Qmax) N (сила нормального давления) отстает на δ от вертикального радиуса. δ не зависит от материала, из которого сделано тело. Определяется экспериментально.

Билет №13.

  1. Вращение твердого тела вокруг неподвижной точки. Число степеней свободы, углы Эйлера.

  2. Условия равновесия произвольной системы сил в векторной и аналитической формах. Частные случаи.

1. Вращение твердого тела вокруг неподвижной точки. Углы Эйлера.

Движение твердого тела, у которого одна точка неподвижна, называется сферическим. Количество степеней свободы n=3. (XA, YA, ZA).

Положение тела определяется с помощью углов Эйлера. Определение: свяжем с телом подвижную систему координат Oxyz. Плоскость xOy пересекает неподвижную плоскость x1Oy1 по прямой ОК – линии узлов.

Ψ – угол прецессии;

φ – угол собственного вращения

θ – угол нутации.

Все углы против часовой стрелке.

Если заданы функции Ψ=f1(t); φ=f2(t); θ=f3(t) то движение полностью определено.

2. Условия равновесия для произвольной простр.системы сил, а также следствия из этих уравнений.

R=0 и Lo=0 –ур-я равновесия. Им соотв-ют 6 скалярных алгебраических ур-1 равновесия для простр.системы сил:

Fkх=0 Fkу=0 Fkz=0 Мх(Fk)=0 Му(Fk)=0 Мz(Fk)=0 – аналитическое условие равновесия для произвольной системы сил.

Пусть все силы  пл-ти хоу, тогда: Fkх=0 Fkу=0 Мо(Fk)=0 условие равновесия для произвольной плоской системы сил.

Условие равновесия для плоской системы параллельных сил.

Пустьсилы  оси оу, тогда Fkх=0 Мо(Fk)=0

Условие равновесия для пространственной системы параллельных сил.

F1, F2, F3,…,Fn  оси оz, тогда: Fkz=0 Мх(Fk)=0 Му(Fk)=0

Вторая форма условия равновесия для пороизвольной плоской системы сил:

МА(Fk)=0 МВ(Fk)=0 МС(Fk)=0 – причем т.А, т,В, т.С  одной прямой.

- Докажем необходимость этих условий:

Допустим, система сил нах-ся в равновесии. Тогда очевидно, что  моментов всех сил относительно любой точки пл-ти=0, т.е. выполняются эти 3 условия.

- Докажем достаточность этих условий:

Доказать достоточность – это значит доказать, что при выполнении этих усл-й система нах-ся в равновесии. Доказывать будем методом от противного, поэтому предположим, что эти усл-я выполняются, но система не нах-ся в равновесии, т.е. существует R*0 эквив.данной сист.сил.

Рассмотрим усл-е первое и 2-е: для того, чтобы они выполнялись необходимо, чтобы R* проходил через т.А и т.В. Согласно третьему условию hR=0. Поскольку т.С  прямой АВ это может выполняться только в случае R*=0, т.е. наше предположение не верно и система действительно нах-ся в равновесии.

Третья форма усл-я равновесия для произвольной плоской системы сил.

Fkz=0 МА(Fk)=0 МВ(Fk)=0 – причем ось ох не перпендикулярна АВ.

- Необходимость этого усл-я очевидна, т.к.если система нах-ся в равновесии, то главный вектор и главный момент =0 относительно любой точки.

- Докажем достаточность этих условий:

Предположим, что система не нах-ся в равновесии и сущ-ет, т.е. сущ-ет R* и R* 0 является равнодействующей данной системы сил. Для того, чтобы выполнялось усл-е 2 и 3 необходимо, чтобы R* проходил через АВ.

Потребуем выполнения усл-я R*cos=0, поскольку х не перпендикулярна АВ , то R* должно быть равно 0, т.о. мы доказали, что эти усл-я достаточны для того чтобы система находилась в равновесии.

На основании двух изложенных форм ур-й равновесия для плоской системы параллельных сил можно записать еще один вид ур-я равновесия для плоской системы параллельных сил:

МА(Fk)=0 МВ(Fk)=0, АВ не параллельна F1, F2, F3,…,Fn

Билет №14.

  1. Определение скоростей точек плоской фигуры с помощью МЦС.

  2. Теорема Вариньона о моменте равнодействующей силы. Пример применения: распределенные силы.

1. Опред. v 2-х точек с пом. МЦС.

Зная положение МЦС и скорость какой-либо точки фигуры, можно найти скорости всех точек плоской фигуры. Пусть P – МЦС и известна скорость какой-либо точки фигуры vА, тогда ω= vА/AP. vB= vАPB/PA. Соединив конец вектора vB с точкой Р, получим распределение скоростей вдоль отрезка РВ.

2. Теорема Вариньона.

Если данная система сил имеет равнодействующую, то момент равнодействующей относительно произвольной точки О равен сумме моментов относительно той же точки.

Пусть система сил (F1, F2,…,Fn) приводит к равнодействующей R, проходящей через точку С пересечения линий действия сил. Возьмем произвольную точку О, тогда:

MO(R)=rxR=rx∑Fi=∑(rxFi)= ∑MOi(Fi).

Ч. т. д..

Билет №15.

  1. Мгновенный центр ускорений. Частные случаи.

  2. Лемма о параллельном переносе силы.

1. МЦУ. Способы нахождения.

МЦУ – точка плоской фигуры, ускорение которой в данный момент времени равно нулю.

aQ=aA+aAQ=0. Угол между aQA и QA tgα=aBAτ/aBAn=ε/ω², aAQ=√aAQτ+aAQn=AQ√ ε²+ω4

1 способ нахождения МЦУ:

Отложить от точки А под углом α=arctg(ε/ω²) к aA отрезок AQ=aA/√(ε²+ω4 в направлении круговой стрелки ε.

2 способ нахождении МЦУ основан на условии задачи – если ускорение какой-либо точки по условию задачи равно нулю, то эта точка является МЦУ.

2. Лемма о параллельном переносе силы.

Сила, приложенная к какой-либо точке твердого тела, эквивалентна такой же силе, приложенной к любой другой точке тела, и паре сил, момент которой равен моменту данной силы относительно новой точки приложения.

Доказательство: пусть дана сила F. Приложим к какой-либо точке В систему F и F”.

|F|=|F|=|F|. F~(F,F,F”), т.к. (F’,F”) ~ 0, то

F ~ (F,F’,F”) ~ (F,F,F) ~ (F’,M(F,F”)).

Но M(F,F”)=BAxF=MB(F).

Получаем:

F ~ (F’,M(F,F”))

Ч. т. д.

Билет №16.

  1. Векторные и скалярные формулы для скоростей и ускорений точек тела при его вращении вокруг неподвижной точки.

  2. Аналитическое выражение для моментов силы относительно осей координат.

1. Скорости и ускорения точек тела при его вращении вокруг неподвижной точки.

VA=ω×rA. Пусть точка М лежит на мгновенной оси вращения.

i j k

VM=ω×rM= ωx ωy ωz

XM YM ZM

X/ωx=Y/ωy=Z/ωz – мгновенная ось вращения.

aA=dv/dt=dω/dt×rA+ω×drA/dt=ε×rA+ω×vA=aAвр+aAос.

aAвр= ε×rA – вращательное ускорение точки.

aAос= ω×vA – осестремительное ускорение точки.

Формула Ривальса: aAoc=ωvAsin(ω, vA). aвр направлен перпендикулярно плоскости (ε,r) в сторону, откуда переход от ε к r виден против часовой стрелки.

aвр направлен по перпендикуляру к плоскости (ω,v).

2. Аналитические выражения для моментов силы относительно осей координат.

i j k

MO(F)= xA yA zA =>

Fx Fy Fz

  • MOx(F)=yFz-zFy

  • MOy(F)=zFx-xFz

MOz(F)=xFy-yFx

Билет №17.

  1. Свободное движение твердого тела. Скорости и ускорения его точек.

  2. Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.

1. Скорости и ускорения точек тела при его свободном движении.

Разложение общего вида движения на поступательное, связанное с точкой О и вращательное относительно О.

Поступательное:

X1o=f1(t); Y1o=f2(t); Z1o=f3(t).

Вращательное:

Ψ=f4(t); φ=f5(t); θ=f6(t).

Таким образом, число степеней свободы при свободном движении твердого тела равно 6.

ρA=ρо+rvA=dρ/dt+dr/dt=vo+ω×r.

aA=dvA/dt=dvo/dt+dω/dt×r+ω×dr/dt=ao+ε×r+ω²r= ao+aAвр+aAос.

2. Связь между моментом относительно оси и относительно точки.

Момент силы F относительно оси z равен проекции на эту ось вектора момента силы F относительно произвольной точки О на этой оси.

Доказательство:

Пусть О – произвольная точка на оси z. Момент силы F относительно точки О перпендикулярен плоскости ОАВ

MO(F)┴(OAB). Пусть угол между MO(F) и осью z равен α. Тогда ПрzMO(F)=2SΔOAB= 2SΔOAB∙cosα => Mz(F) = |MO(F)|cosα.

Ч.т.д.

Билет №18.

  1. Сложное движение точки. Основные понятия и определения. Примеры.

  2. Центр системы параллельных сил. Формулы для радиуса-вектора и координат центра системы параллельных сил.

1. Сложное движение точки. Основные понятия.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

2. Центр системы параллельных сил. Формула для радиус-вектора и координат центра системы параллельных сил.

Дано : F1 || F2 .

R=F1+F2. MC(R)=MC(F1)+MC(F2)=0

 F1∙CA1=F2∙CA2. Повернем F1 и F2 на угол α, при этом R повернется тоже на угол α. С – центр параллельных сил.

То же самое, если сил несколько и не по одной прямой. R=∑Fi, R||Fi (точка С принадлежит R) MO(R)=∑MO(Fi), rC×R=∑(ri×Fi).

Введем единичный вектор eFk=FkeR=∑Fke.

rC×∑Fie=∑ri×(Fie). ∑FirC×e=∑Firi×e.

(∑FirC-∑Firie=0

rC=∑Firi/∑Fi.

Координаты центра системы параллельных сил:

XC=∑Fixi/R; YC=∑Fiyi/R;

ZC=∑Fizi/r

Билет №19.

  1. Сложное движение точки. Теорема о сложении скоростей. Примеры.

  2. Центр тяжести тела. Методы нахождения центра тяжести.

1. Сложное движение точки. Основные понятия.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

Центр тяжести тела. Методы нахождения центра тяжести.

Центр тяжести – центр системы параллельных сил тяжести частиц тела. Его радиус-вектор rC=∑Piri/P.

XC=∑Pixi/P; Yc=∑Piyi/P; ZC=∑Pizi/P

Вес тела P=∑Pi, Pi – сила тяжести частицы.

Методы определения координат центра тяжести тела.

  1. Свойства симметрии: если тело имеет плоскость, ось или центр симметрии, то центр тяжести лежит на них.

  2. Разбиение: Если известны центры тяжести отдельных частей тела, то

rC=(V1rC1+V2rC2+…+VnrCn)/V

Отрицательные массы:

rC=VсплrC-V1rC1-…-VnrCn, где Vk, rCk – объемы и радиус-векторы пустот тела.

  1. Интегрирование: если тело нельзя разбить)

XC=(∫xdV)/V, YC=(∫ydV)/V,

ZC=(∫zdV)/V

Билет №20.

  1. Сложное движение точки. Теорема о сложении ускорений – теорема Кориолиса. Ускорение Кориолиса.

  2. Лемма о параллельном переносе силы.

1. Сложное движение точки. Основные понятия.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

Опр-е ускорения точки в сложном движении

VM=VO+[ ωr]+ Vr

WM=d VM/dt=(d VO/dt)+[ εr]+[ ω(dr/dt)]+d Vr/dt

dr/dt=[ ωr]+ Vr

WM=Wo+[ εr]+ [ω[ωr]]+[ ω Vr]+ [ ωVr]+Wr

d Vr/dt=[ ω Vr]+ Wr

Wk=2[ω Vr]

WM=WL+Wr+WK – кинематическая теорема Кариолиса

Абсолютное ускорение точки –это есть сумма переносного ускорения, относительного ускорения и ускорения Кариолиса

Переносное ускорение хар-ет измен-е переносной скорости в переносном движении.

Относительное ускорение хар-ет изм-е относительной скоростив в относительном движении. Ускорение Кариолиса хар-ет изм-е относительной скорости в переносном движении

Ускорение Кариолиса.

Согласно правилу векторного произведения, вектор ускорения Кариолиса ┴ пл-ти, в кот-й лежат вектора ω и Vr и направлена в ту сторону,что с конца этого вектора кратчайшее совмещение первого вектора ко второму ω к Vr кажется видным против хода часовой стрелки.

2. Лемма о параллельном переносе силы.

Сила, приложенная к какой-либо точке твердого тела, эквивалентна такой же силе, приложенной к любой другой точке тела, и паре сил, момент которой равен моменту данной силы относительно новой точки приложения.

Доказательство: пусть дана сила F. Приложим к какой-либо точке В систему F и F”.

|F|=|F|=|F|. F~(F,F,F”), т.к. (F’,F”) ~ 0, то

F ~ (F,F’,F”) ~ (F,F,F) ~ (F’,M(F,F”)).

Но M(F,F”)=BAxF=MB(F).

Получаем:

F ~ (F’,M(F,F”))

Ч. т. д.

Билет №21.

  1. Сложное движение точки. Ускорение Кориолиса. Правило Жуковского. Примеры.

  2. Эквивалентность пар. Сложение пар. Условие равновесия системы пар сил.

1. Сложное движение точки. Основные понятия.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

Ускорение Кориолиса. Правило Жуковского.

Полное ускорение точки А, участвующей в сложном движении

aA=ar+ae+2ω×vr. Слагаемое aК=2ω×vr называется ускорением Кориолиса.

aK=2ωvrsin(ω,vr). Частные случаи:

А) ω0 – смена знака

Б) vr0 – относительный покой (смена знака движения).

В) sin(ω,vr)0, ω||vr.

Правило Жуковского. Ускорение Кориолиса равно проекции относительной скорости на плоскость, перпендикулярную ω, увеличенной в 2ω раз и повернутой на 90° в направлении круговой стрелки ω.

2. Пара сил. ∑ моментов сил, составляющих пару.

Пара сил – система 2-х равных по модулю и противоположных по направлению сил, действующих на твердое тело. ∑F=0; ∑M≠0.

Расстояние между линиями действия – плечо d. Пара сил характеризуется плоскостью действия, моментом пары.

ТЕОРЕМА: Векторный момент пары сил равен векторному моменту одной из её сил относительно другой.

Доказательство:

MO(F1)+ MO(F2)=rAxF1+ rAxF2= rAxF1- rBxF1=(rA-rB) x F1. Из сложения треугольником OA+AB=OB => AB=OB-OA => MO(F1)+ MO(F2)=ABxF1=MA(F1) => сумма моментов сил, составляющих пару, не зависит от положения точки, относительно которой берутся моменты.

Билет №22.

  1. Сложение вращений твердого тела вокруг пересекающихся осей.

  2. Зависимость между главными моментами системы сил относительно двух центров приведения.

1. Сложение вращений твердого тела вокруг пересекающихся осей.

В случае вращательных относительного и переносного движений твердого тела, когда оси их вращений пересекаются в точке О, абсолютное движение будет сферическим движением вокруг точки О.

ω=ωe+ωr. Скорость любой точки, лежащей на линии по которой направлен вектор ω v=ω×r=0. Скорость любой точки М тела в данном случае можно определить так: vM=ω×rM=(ωe+ωrrM=ve+vr.

vee∙he; vrr∙hr; v=ω∙h;

где he, hr, h – кратчайшие расстояния от точки М до соответствующих осей вращения.

2. Зависимость между главными моментами сил относительно 2 центров приведения.

Главный момент системы сил относительно второго центра приведения О1 равен вектору главного момента системы сил относительно первого центра приведения О, плюс векторный момент главного вектора, приложенного в первом центре приведения относительно второго центра.

Доказательство:

Момент относительно любой точки O1 MO1=∑(rO1ixFi). Момент относительно первого центра приведения О MO=∑(rOixFi). Причем rO1i=O1O+rOi.

MO1=∑(O1O+rO1)xFi=O1OFi+ ∑(rOixFi)=MO+O1OxR= MO+MO1(R).

MO1= MO+MO1(R) (1)

Билет №23.

  1. Определение ускорений точек плоской фигуры при известном положении МЦУ.

  2. Система сходящихся сил. Условия равновесия.

1. Определение ускорения точек плоской фигуры с помощью МЦУ.

Зная положение МЦУ и ускорение какой-либо точки плоской фигуры можно найти ускорение всех точек плоской фигуры.

Пусть известна величина и направление точки А aA плоской фигуры и МЦУ – Q. Тогда ускорение любой другой точки B плоской фигуры будет лежать под углом α, равным углу между aA и QA против направления круговой стрелки ε.. Его величина aB=QB/√ε²+ωюбюб4=QBaA/ AQ.

2. Система сходящихся сил. Условия равновесия.

Система сил называется сходящейся, если линии всех сил пересекаются в одной точке. Попарно поочередно сложим эти силы, перенесенные к точке пересечения. Тогда R=∑Fk – главный вектор, так как R12=F1+F2, R13=R12+F3 и т. д.

Rx=∑Fix R=√(Rx²+Ry²+Rz²), cos(x,R)=Rx/R – аналитический способ задания.

Условия равновесия.

Система находится в равновесии когда главный вектор R=0.

А) Векторная форма: R=∑Fk=0;

Б) Аналитическая форма: Rx=Fkx=0, Ry=Fky=0, Rz=Fkz=0;

В) Графическая форма: замкнут многоугольник сил.

Билет №24.

  1. Способы определения углового ускорения при плоском движении твердого тела.

  2. Равновесие тела с учетом трения качения. Коэффициент трения качения.

1. Способы опред. угл. уск. При плоском движении.

  1. Если задана зависимость ула поворота плоского тела от времени φ=φ(t), то ε=φ׳׳(t);

  2. Если известна зависимость угловой скорости от времени ω=ω(t), то, так как ω=vτ/R, то ε=ω׳(t)=d/dt(vτ/R)=1/R∙dvτ/dt= aτ/R.

  3. Из условия задачи.

Н апример,

Y


B

C


A X

Если известны по модулю aA и (aBA)n, то, проецируя векторное равенство aB=aA+(aBA)τ+(aBA)n на ось Ох, получим:

εAB∙AB∙sinφ=aA+(ωAB)²∙AB∙cosφ

2. Трение качения. Коэффициент трения качения.

Круглое тело вдавливается в опорную поверхность (дуга CD). Трение качения – сопротивление, возникающее при качении одного тела по поверхности другого. Полная реакция N’ опорной поверхности препятствует качению.

Нам нужен момент сопротивления качению => заменим N’ и представим в виде Fтр. и N, приложенных в точке В, смещенной от центра на δ. Условия равновесия: N=P, F=Q. QmaxR=δN. Mтр.max=δ∙N. Момент сопротивления качению 0<Mк<Mк.max (не зависит от радиуса). Коэффициент трения качения δ при предельном состоянии равновесия (при Qmax) N (сила нормального давления) отстает на δ от вертикального радиуса. δ не зависит от материала, из которого сделано тело. Определяется экспериментально.

Билет №25.

  1. Полная и локальная производные вектора. Формула Бура.

  2. Центр тяжести тела. Методы определения положения центра тяжести.

1. Полная и локальная производная вектора. Формула Бура.

Пусть задан вектор b(t)=bxi+byj +bzk в подвижной системе отсчета. Орты i, j, k не меняются в подвижной системе отсчета. Поэтому локальная производная d~b/dt=dbx/dt∙i+dby/dt∙j+dbz/dt∙k, а полная производная с учетом изменения также ортов i, j, k примет вид: db/dt= dbx/dt∙i+dby/dt∙j+dbz/dt∙k+bxdi/dt+ bzdj/dt+ bzdk/dt.= d~b/dt+ω×(bxi+ byj+bzk)= d~b/dt+ω×b.

db/dt=d~b/dt+ω×bформула Бура.

Частные случаи:

А) ω=0db/dt= d~b;

Б) Если вектор b не меняется в подвижной системе отсчета, то db/dt= ω×b;

В) Если b все время параллелен вектору угловой скорости (ω×b=0), то db/dt= d~b.

2. Центр тяжести тела. Методы нахождения центра тяжести.

Центр тяжести – центр системы параллельных сил тяжести частиц тела. Его радиус-вектор rC=∑Piri/P.

XC=∑Pixi/P; Yc=∑Piyi/P; ZC=∑Pizi/P

Вес тела P=∑Pi, Pi – сила тяжести частицы.

Методы определения координат центра тяжести тела.

  1. Свойства симметрии: если тело имеет плоскость, ось или центр симметрии, то центр тяжести лежит на них.

  2. Разбиение: Если известны центры тяжести отдельных частей тела, то

rC=(V1rC1+V2rC2+…+VnrCn)/V

Отрицательные массы:

rC=VсплrC-V1rC1-…-VnrCn, где Vk, rCk – объемы и радиус-векторы пустот тела.

  1. Интегрирование: если тело нельзя разбить)

XC=(∫xdV)/V, YC=(∫ydV)/V,

ZC=(∫zdV)/V

Билет №26.

  1. Пара вращений.

  2. Теорема о приведении произвольной системы сил к паре – основная теорема статики.

1. Пара вращений.

При противоположных направлениях векторов ωe и ωr и равенстве их модулей (ωe = ωr), если условие ωe=-ωr выполняется на отрезке времени t2-t1, абсолютное движение будет поступательным. Такой случай сложения вращательных движений называется парой вращений.

Действительно, ω=ωe+ωr=

-ωr+ωr=0, и для любой точки тела справедливы соотношения: v=ωe×r1+ωr×r2=ωe×(r1-r2)=ωe×OeOr=ωr×OrOe;

Следовательно, скорости всех точек тела в данном случае одинаковы и равны скорости поступательного движения.

2. Т. о приведении произвольной системы сил к силе и паре сил.

Теорема Пуассо: Произвольная система сил, действующих на твердое тело, можно привести к какому-либо центру О, заменив все действующие силы главным вектором системы сил R, приложенным к точке О, и главным моментом MO системы сил относительно точки О.

Доказательство:

Пусть О – центр приведения. Переносим силы F1, F2,…,Fn в точку О: FO= F1 +F2+…+Fn= ∑Fk. При этом получаем каждый раз соответствующую пару сил (F1,F1”)…(Fn,Fn”), Моменты этих пар равны моментам этих сил относительно точки О. M1=M(F1,F1”)=r1xF1=MO(F1). На основании правила приведения систем пар к простейшему виду MO=M1+…+M2=∑MO(Fk)= ∑rkxFk => (F1, F2,…,Fn) ~ (R,MO) (не зависит от выбора точки О).

Билет №27.

  1. Сложение вращений твердого тела вокруг параллельных осей.

  2. Инварианты системы сил. Частные случаи приведения системы сил к простейшему виду.

1. Сложение вращений твердого тела относительно параллельных осей.

Если оси вращательных движений тела параллельны, то вектор результирующей угловой скорости ω тела в неподвижной системе координат будет коллинеарен ωе и ωr. Положение мгновенной оси вращения тела как оси, проходящей в данный момент времени через точку Р – МЦС в плоскости П, перпендикулярной осям вращений, можно определить из анализа: vrP=ωr×OrP, veP= ωe×OeP, Or, Oe – точки пересечений П с соответствующими осями вращения. vP=veP+vrP=0 veP= - vrP veP= vrP ωrOrP= ωeOeP.

В зависимости от взаимного расположения и численного значения векторов ωr и ωe можно выделить 3 случая сложения вращательных движений:

А) При совпадении направлений векторов ωe и ωr абсолютное движение будет плоским. Абсолютная угловая скорость в этом случае будет иметь направление, совпадающее с направлениями её составляющих, а её модуль ω=ωre. Положение точки Р можно найти из пропорции ωe/OrP=ωrOeP=ω/OeOr. Скорость любой точки тела может быть найдена по формуле v=ω×PM.

Б) При противоположных направлениях векторов ωe и ωr, когда ωr≠ωe, абсолютное движение будет плоским. Абсолютная угловая скорость имеет направление, совпадающее с направлением большей по модулю составляющей угловой скорости, а её модуль ω=|ωre|. Пропорции для нахождения точки Р имеют тот же вид, что и в пункте А.

2. Инварианты системы тел. Частные случаи приведения.

Инвариант системы сил – векторные и скалярные величины, не зависящие от точки приведения системы сил.

  1. Главный вектор R=∑Fi=const.

  2. Скалярное произведение главного вектора и главного момента LOR=const=FxMx+ FyMy+FzMz.

Доказательство: Умножим обе части выражения (1) на R:

MO1R= MOR+(O1OxR)R  ПрR(LO1)= ПрR(LO)= LO1R∙ ∙cos(LO1^R)= LO2Rcos(LO2^R).

LO1xRx+ LO1yRy +LO1zRz =LO2xRx +LO2yRy +LO2zRz

Приведение к простейшему виду:

  1. MO=0, R0  к равнодействующей, равной R, проходящей через О.

  2. R=0, MO0  к паре с моментом MO (независимо от О).

R0, MO0, MO R к равнодействующей, равной R, проходящей через О1: ОО1=d= |MO| / |R|. Доказательство: R и пара сил с моментом MO лежат в одной плоскости 

 силы R и R” уравновешиваются, систему можно заменить равнодействующей R’.

  1. MOR0, R0, MO0, R не перпендикулярна MO – приводится к динаме.

Доказательство: Разложим MO на 2 составляющих: M1 и M2. M2 представим в виде пары сил R’ и R”. Силы R и R” уравновешиваются, а M1 перенесем в точку O1 (свободы).

В результате получили винт R’, M1, проходящий через точку О1.

Прямая, проходящая через точку О1 – ось динамы.

Билет №28.

  1. Теорема о проекциях скоростей двух точек твердого тела на прямую, проходящую через эти точки.

  2. Главный вектор и главный момент системы сил, формулы для их вычисления.

1. Теорема о проекциях двух точек на линию, соединяющую эти точки.

При любом движении проекции двух точек на линию, их соединяющую, равны.

Док-во: rB=rA+AB => drB/dt = drA/dt+dAB/dt, но dAB/dt ┴ AB. Проецируем на линию АВ, учитывая, что dAB/dt ┴ AB:

ПрАВ(vB)=ПрАВ(v)A+0.

2. Главный вектор, момент.

Пусть дана система сил (F1, F2,…,Fn).

Главным вектором системы сил называется вектор, равный векторной сумме этих сил.

R=∑Fk.

Rx=∑Fkx; cos(x,R)= Rx/R;

Ry=∑Fky; cos(y,R)= Ry/R;

Rz=∑Fkz; cos(z,R)= Rz/R;

Главный момент системы сил – сумма моментов сил относительно какого-либо полюса (центра приведения).

Lx=∑Mx(Fk)

Билет №29.

  1. Векторные и скалярные формулы для скоростей и ускорений точек тела при его вращении вокруг неподвижной точки.

  2. Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.

1. Скорости и ускорения точек тела при его вращении вокруг неподвижной точки.

VA=ω×rA. Пусть точка М лежит на мгновенной оси вращения.

i j k

VM=ω×rM= ωx ωy ωz

XM YM ZM

X/ωx=Y/ωy=Z/ωz – мгновенная ось вращения.

aA=dv/dt=dω/dt×rA+ω×drA/dt=ε×rA+ω×vA=aAвр+aAос.

aAвр= ε×rA – вращательное ускорение точки.

aAос= ω×vA – осестремительное ускорение точки.

Формула Ривальса: aAoc=ωvAsin(ω, vA). aвр направлен перпендикулярно плоскости (ε,r) в сторону, откуда переход от ε к r виден против часовой стрелки.

aвр направлен по перпендикуляру к плоскости (ω,v).

2. Связь между моментом относительно оси и относительно точки.

Момент силы F относительно оси z равен проекции на эту ось вектора момента силы F относительно произвольной точки О на этой оси.

Доказательство:

Пусть О – произвольная точка на оси z. Момент силы F относительно точки О перпендикулярен плоскости ОАВ

MO(F)┴(OAB). Пусть угол между MO(F) и осью z равен α. Тогда ПрzMO(F)=2SΔOAB= 2SΔOAB∙cosα => Mz(F) = |MO(F)|cosα.

Ч.т.д.

Билет №30.

  1. Соотношение между ускорениями двух точек плоской фигуры при плоском движении твердого тела.

  2. Главный вектор и главный момент системы сил, формулы для их вычисления.

1. Соотн. между уск. 2-х точек при плоском движении.

vB=vA+ωxAB.

aB=dvB/dt=dvA/dt+(dω/dt)xAB+ ωx(dAB/dt)=aA+εxAB+ωx(ωx

AB).

Считая, что εхАВ=(aBA)τ;

(aBA)n=ω²∙AB, окончательно получим:

aB=aA+(aBA)τ+(aBA)n

aA – ускорение полюса;

aBA – ускорение движения вокруг полюса.

2. Главный вектор, момент.

Пусть дана система сил (F1, F2,…,Fn).

Главным вектором системы сил называется вектор, равный векторной сумме этих сил.

R=∑Fk.

Rx=∑Fkx; cos(x,R)= Rx/R;

Ry=∑Fky; cos(y,R)= Ry/R;

Rz=∑Fkz; cos(z,R)= Rz/R;

Главный момент системы сил – сумма моментов сил относительно какого-либо полюса (центра приведения).

Lx=∑Mx(Fk)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5168
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее