теория

2017-08-06СтудИзба

Описание файла

Документ из архива "теория", который расположен в категории "". Всё это находится в предмете "теоретическая механика" из 2 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "теоретическая механика" в общих файлах.

Онлайн просмотр документа "теория"

Текст из документа "теория"

13) Определение скоростей точек плоской фигуры с помощью МЦС.

Если мгновенный центр скоростей Р найден и если известна угловая скорость фигуры, то скорость любой точки В фигуры определяется как скорость этой точки во вращательном движении вокруг МЦС, т. е. вектор   перпендикулярен к отрезку РВ и по модулю равен w×РВ. Отсюда следует, что скорости точек плоской фигуры пропорциональны их расстояниям от мгновенного центра скоростей, т. е. 





































14) Соотношение между ускорениями двух точек плоской фигуры при плоском движении.

т. е. ускорение какой-либо точки плоской фигуры при плоском движении равно векторной сумме ускорения полюса и ускорения этой точки при вращательном движении плоской фигуры вокруг полюса.

Ускорение точки В вокруг А состоит из касательной и нормальной составляющих:  , модули которых  .

Касательное ускорение направлено перпендикулярно отрезку АВ в сторону, указанную дуговой стрелкой углового ускорения.Нормальное ускорение направлено от точки В к полюсу А. Таким образом,  .

Обозначив угол между ускорением точки В вокруг А и отрезком АВ через "альфа", найдем:  .







15) Способы определения углового ускорения при плоском движении.

т. е. ускорение какой-либо точки плоской фигуры при плоском движении равно векторной сумме ускорения полюса и ускорения этой точки при вращательном движении плоской фигуры вокруг полюса.

Ускорение точки В вокруг А состоит из касательной и нормальной составляющих:  , модули которых  .

Касательное ускорение направлено перпендикулярно отрезку АВ в сторону, указанную дуговой стрелкой углового ускорения.Нормальное ускорение направлено от точки В к полюсу А. Таким образом,  .

Обозначив угол между ускорением точки В вокруг А и отрезком АВ через "альфа", найдем:  .









16) Мгновенный центр ускорений (МЦУ). Способы нахождения.

При определении скоростей точек плоской фигуры было установлено, что в каждый момент времени существует такая точка Р фигуры (МЦС), скорость которой равна нулю. Покажем, что в каждый момент времени существует точка фигуры, ускорение которой равно нулю. Такая точка называется мгновенным центром ускорений (МЦУ). Обозначим ее через Q.

Рассмотрим плоскую фигуру, совершающую движение в плоскости рисунка (рис.). Примем за полюс какую-либо точку А, модуль и направление ускорения аА которой известны в рассматриваемый момент времени. Пусть в этот момент времени известны угловая скорость и угловое ускорение фигуры. Из формулы   следует, что точка Q будет МЦУ, если  , т. е. когда  . Так как вектор aQA составляет с линией AQ угол "альфа"  , то параллельный ему вектор аА направлен к линии, соединяющей полюс А с точкой Q, также под углом "альфа" (см. рис.).

Проведем через полюс А прямую MN, составляющую с вектором его ускорения угол "альфа", откладываемый от вектора аА в направлении дуговой стрелки углового ускорения. Тогда на луче AN найдется точка Q, для которой  . Поскольку, согласно  , точка Q (МЦУ) будет отстоять от полюса А на расстоянии  .

Таким образом, в каждый момент движения плоской фигуры, если угловая скорость и угловое ускорение не равны нулю одновременно, имеется единственная точка этой фигуры, ускорение которой равно нулю. В каждый последующий момент времени МЦУ плоской фигуры будет находиться в различных ее точках.

Если МЦУ — точку Q выбрать за полюс, то ускорение любой точки А плоской фигуры
, так как aQ = 0. Тогда  . Ускорение аА составляет с отрезком QA, соединяющим эту точку с МЦУ, угол "альфа", откладываемый от QA в сторону, противоположную направлению дуговой стрелки углового ускорения. Ускорения точек фигуры при плоском движении пропорциональны расстояниям от МЦУ до этих точек.

Таким образом, ускорение всякой точки фигуры при ее плоском движении определяется в данный момент времени так же, как и при вращательном движении фигуры вокруг МЦУ.

Рассмотрим случаи, когда положение МЦУ можно определить с помощью геометрических построений.

1) Пусть известны направления ускорений двух точек плоской фигуры, ее угловые скорость и ускорение. Тогда МЦУ лежит на пересечении прямых линий, проведенных к векторам ускорений точек фигуры под одним и тем же острым углом: , отложенным от векторов ускорений точек в направлении дуговой стрелки углового ускорения.

2) Пусть известны направления ускорений хотя бы двух точек плоской фигуры, ее угловое ускорение = 0, а угловая скорость не равна 0. 

3) Угловая скорость= 0, угловое ускорение не равно 0. Угол прямой. 













17) Определение ускорений точек плоской фигуры при помощи МЦУ.

(ответ взят из 16 вопроса, просто во всех формулах нужно выразить вместо расстояния до МЦС - ускорение точки)

При определении скоростей точек плоской фигуры было установлено, что в каждый момент времени существует такая точка Р фигуры (МЦС), скорость которой равна нулю. Покажем, что в каждый момент времени существует точка фигуры, ускорение которой равно нулю. Такая точка называется мгновенным центром ускорений (МЦУ). Обозначим ее через Q.

Рассмотрим плоскую фигуру, совершающую движение в плоскости рисунка (рис.). Примем за полюс какую-либо точку А, модуль и направление ускорения аА которой известны в рассматриваемый момент времени. Пусть в этот момент времени известны угловая скорость и угловое ускорение фигуры. Из формулы   следует, что точка Q будет МЦУ, если  , т. е. когда  . Так как вектор aQA составляет с линией AQ угол "альфа"  , то параллельный ему вектор аА направлен к линии, соединяющей полюс А с точкой Q, также под углом "альфа" (см. рис.).

Проведем через полюс А прямую MN, составляющую с вектором его ускорения угол "альфа", откладываемый от вектора аА в направлении дуговой стрелки углового ускорения. Тогда на луче AN найдется точка Q, для которой  . Поскольку, согласно  , точка Q (МЦУ) будет отстоять от полюса А на расстоянии  .

Таким образом, в каждый момент движения плоской фигуры, если угловая скорость и угловое ускорение не равны нулю одновременно, имеется единственная точка этой фигуры, ускорение которой равно нулю. В каждый последующий момент времени МЦУ плоской фигуры будет находиться в различных ее точках.

Если МЦУ — точку Q выбрать за полюс, то ускорение любой точки А плоской фигуры
, так как aQ = 0. Тогда  . Ускорение аА составляет с отрезком QA, соединяющим эту точку с МЦУ, угол "альфа", откладываемый от QA в сторону, противоположную направлению дуговой стрелки углового ускорения. Ускорения точек фигуры при плоском движении пропорциональны расстояниям от МЦУ до этих точек.

Таким образом, ускорение всякой точки фигуры при ее плоском движении определяется в данный момент времени так же, как и при вращательном движении фигуры вокруг МЦУ.

Рассмотрим случаи, когда положение МЦУ можно определить с помощью геометрических построений.

1) Пусть известны направления ускорений двух точек плоской фигуры, ее угловые скорость и ускорение. Тогда МЦУ лежит на пересечении прямых линий, проведенных к векторам ускорений точек фигуры под одним и тем же острым углом: , отложенным от векторов ускорений точек в направлении дуговой стрелки углового ускорения.

2) Пусть известны направления ускорений хотя бы двух точек плоской фигуры, ее угловое ускорение = 0, а угловая скорость не равна 0. 

3) Угловая скорость= 0, угловое ускорение не равно 0. Угол прямой. 













18) Вращение твердого тела вокруг неподвижной точки. Углы Эйлера.

Движение твердого тела называется вращением вокруг неподвижной точки, если во все время движения одна и та же точка твердого тела остается неподвижной. Вращение твердого тела вокруг неподвижной точки называют сферическим движением, поскольку траектория любой точки тела располагается на поверхности сферы с центром в неподвижной точке тела.

Положение тела, как правило, определяется углами Эйлера: углом прецессии  , углом нутации  , углом собственного вращения  .

Линию OK пересечения координатных плоскостей Оху (на рис. изображена в виде заштрихованного овала) и OXY (ограничена белым овалом) назовем линией узлов. Тогда угол прецессии у определяет положение линии узлов ОК относительно неподвижной координатной оси Ох. Для изменения этого угла тело должно вращаться вокруг неподвижной оси Oz, называемой осью прецессии. Угол нутации   определяет положение подвижной оси OZ относительно неподвижной Oz и равен углу между этими осями. Изменение угла  сопровождается вращением тела вокруг линии узлов ОК, называемой осью нутации. Наконец, угол собственного вращения   характеризует вращение тела вокруг оси OZ, называемой осью собственного вращения. В подвижной плоскости OXY это угол между линией узлов ОК и подвижной осью ОХ.

Положительное направление отсчета углов Эйлера   и  противоположно направлению движения часовой стрелки, если смотреть на поворот тела с положительных направлений осей Oz, ОК и OZ соответственно.

Уравнения вращения твердого тела вокруг неподвижно точки:  .



19) Скорости и ускорения точек тела при его вращении вокруг неподвижной точки.



Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее