Занятие 13(Фдз 14) (Занятия и Фдз по АиГ)

2017-07-08СтудИзба

Описание файла

Файл "Занятие 13(Фдз 14)" внутри архива находится в папке "Занятия и Фдз по АиГ". Документ из архива "Занятия и Фдз по АиГ", который расположен в категории "". Всё это находится в предмете "линейная алгебра и аналитическая геометрия" из 2 семестр, которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "алгебра и геометрия" в общих файлах.

Онлайн просмотр документа "Занятие 13(Фдз 14)"

Текст из документа "Занятие 13(Фдз 14)"

6


Занятие 13 (Фдз 14).

Ортогональные операторы в евклидовом пространстве.

Сопряженные и симметричные линейные операторы в евклидовом пространстве.

13.1. Ортогональный оператор и его свойства.

13.2. Сопряженный линейный оператор

13.3. Симметричный (самосопряженный) линейный оператор. Существование и нахождение ортонормированного собственного базиса симметричного линейного оператора.

13.1. Линейный оператор , заданный в евклидовом пространстве со скалярным произведением , называется ортогональным оператором, если , где .

Ортогональный оператор не изменяет длин векторов и углов между ними, т.е.

.

В произвольном базисе пространства

, (1)

где - матрица ортогонального оператора, - матрица Грама, - координаты векторов в базисе . В случае ортонормированного базиса , и равенство (1) заменяется равенством

. (2)

Следовательно, в любом ортонормированном базисе пространства ортогональный оператор имеет ортогональную матрицу .

Пример 1. Рассмотрим двумерное евклидово пространство , содержащее все векторы на декартовой плоскости со стандартным скалярным произведением . Пусть - линейный оператор поворота векторов вокруг начала координат на заданный угол . Доказать, что - ортогональный оператор.

Решение.

С геометрической точки зрения ортогональность заданного оператора очевидна.

Проведем строгое доказательство.

- единичные векторы осей . Эти векторы образуют стандартный ортонормированный базис пространства , с которым связано стандартное скалярное произведение.

. (3)

Рассмотрим два произвольных вектора .

.

.

.

Т.к. , делаем вывод: - ортогональный оператор.

В дополнение к проведенному доказательству проверим ортогональность матрицы оператора в ортонормированном базисе . Из формул (3), (2) находим

, - ортогональная матрица.

Пример 2. Рассмотрим двумерное евклидово пространство со скалярным произведением в базисе . Пусть - линейный оператор, имеющий в базисе матрицу . Требуется выяснить, является ли оператор ортогональным оператором.

Решение.

Проверим выполнение равенства .

- матрица Грама в базисе .

не является ортогональным оператором.

13.2. Пусть даны два линейных оператора и в евклидовом пространстве со скалярным произведением . Оператор называется сопряженным оператором оператору , если , где .

Если и матрицы оператора и сопряженного ему оператора в базисе пространства , и - матрица Грама скалярного произведения в этом базисе, то

. (4)

Указанная связь между матрицами и позволяет найти матрицу , если известна матрица , и наоборот, найти матрицу , если известна матрица .

В ортонормированном базисе, где , равенство (4) заменится равенством .

Следует отметить, что сопряженный оператор оператору совпадает с оператором . Поэтому, операторы и называются взаимно сопряженными.

Пример 3. Рассмотрим двумерное евклидово пространство со скалярным произведением в базисе . Пусть - линейный оператор, имеющий в базисе матрицу . Потребуем найти матрицу сопряженного оператора в данном базисе. Проверить также, что матрица оператора , сопряженного оператору , совпадает с матрицей оператора .

Решение.

- матрица Грама в базисе .

Из матричного равенства (5) выводим: .

.

Займемся теперь поиском матрицы оператора . Согласно формуле (5) выводим:

.

13.3. Пусть - линейный оператор, действующий в евклидовом пространстве со скалярным произведением . Оператор называется самосопряженным или симметричным, если , где .

Если - матрица оператора в базисе пространства , и - матрица Грама скалярного произведения в этом базисе, то

.

В ортонормированном базисе (в котором ) это равенство заменится равенством

.

Следовательно, в ортонормированном базисе симметричный оператор имеет симметрическую матрицу.

Важные свойства симметричного оператора фиксирует следующая теорема.

Все собственные значения симметричного оператора действительны, и собственные векторы, отвечающие различным собственным значениям ортогональны.

Из собственных векторов симметричного оператора можно не только образовать собственный базис, но и даже ортонормированный собственный базис. Поэтому, любой симметричный оператор является оператором простого типа (см. занятие 7).

Пример 4. Найти собственный ортонормированный базис симметричного оператора , действующего в двумерном евклидовом пространстве, если в ортонормированном базисе оператор имеет матрицу .

Решение.

1. Из характеристического уравнения найдем собственные значения оператора .

.

2. Теперь найдем собственные векторы.

- собственный вектор с собственным значением .

- собственный вектор с собственным значением .

В ортонормированном базисе скалярное произведение задается формулой

, где - координаты векторов в этом базисе.

- ортогональные векторы (что согласуется с выводами теоремы, приведенной выше) - линейно независимая система. Т.к. евклидово пространство двумерно, приходим к выводу: - ортогональный собственный базис.

Чтобы получить ортонормированный собственный базис нужно пронормировать векторы .

.

.

Итак, - собственный базис симметричного оператора .

Пример 5. Найти собственный ортонормированный базис симметричного оператора , действующего в трехмерном евклидовом пространстве, если в ортонормированном базисе оператор имеет матрицу

.

Решение.

Найдем собственные значения и собственные матрицы оператора .

.

- собственный вектор с собственным значением .

- собственный вектор с собственным значением .

- собственный вектор с собственным значением .

Собственные векторы отвечают различным собственным значениям. Следовательно, - ортогональная система векторов и одновременно является собственным ортогональным базисом оператора . Чтобы получить собственный ортонормированный базис , пронормируем векторы .

.

.

.

Пример 6. Найти собственный ортонормированный базис симметричного оператора , действующего в трехмерном евклидовом пространстве, если в ортонормированном базисе оператор имеет матрицу .

Решение. Найдем собственные значения и собственные матрицы оператора .

.

, .

- два линейно независимых собственных вектора с собственным значением .

- собственный вектор с собственным значением .

Собственные векторы образуют собственный базис оператора .

Этот базис не является ортогональным:

ортогонален , т.к. ,

не ортогонален , т.к. .

Линейная оболочка векторов совпадает с множеством всех собственных векторов с собственным значением и образует линейное подпространство в пространстве . Система векторов служит базисом подпространства . Каждый из векторов этой оболочки ортогонален вектору .

Проведем ортогонализацию базиса подпространства .

.

, .

Векторы образуют ортогональный базис подпространства , а тройка векторов - ортогональный базис (собственный базис оператора ) пространства .

Пронормировав векторы , получим собственный ортонормированный базис .

.

.

.

Домашнее задание.

1. В двумерном евклидовом пространстве со скалярным произведением в базисе задан линейный оператор , имеющий в базисе матрицу . Найти матрицу в базисе оператора , сопряженного оператору ли оператор .

2. Найти собственный ортонормированный базис симметричного оператора , действующего в двумерном евклидовом пространстве, если в ортонормированном базисе оператор имеет матрицу .

3. Найти собственный ортонормированный базис симметричного оператора , действующего в трехмерном евклидовом пространстве, если в ортонормированном базисе оператор имеет матрицу .

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее