Главная » Все файлы » Просмотр файлов из архивов » Документы » Краткие ответы на всю теорию за 1 семестр по матану

Краткие ответы на всю теорию за 1 семестр по матану, страница 7

2017-07-08СтудИзба

Описание файла

Документ из архива "Краткие ответы на всю теорию за 1 семестр по матану", который расположен в категории "". Всё это находится в предмете "математический анализ" из 1 семестр, которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "математический анализ" в общих файлах.

Онлайн просмотр документа "Краткие ответы на всю теорию за 1 семестр по матану"

Текст 7 страницы из документа "Краткие ответы на всю теорию за 1 семестр по матану"

Таким образом, получаем уравнение касательной  y=f ¢(x )×x +y - f ¢(x )×x или 

y = f ¢(x )×(x – x ) + f(x )

Если касательная, проходящая через точку М(х , ) параллельна оси ординат (т.е. производная в этой точке не существует), то ее уравнение х=х .

 

Н аряду с касательной к кривой в данной точке часто приходится рассматривать нормаль.

Нормалью к кривой в данной точке называется прямая, проходящая через эту точку перпендикулярно к касательной в данной точке.

Из определения нормали следует, что ее угловой коэффициент связан с угловым коэффициентом касательной к равенством:

= tg b = tg(90° + a) = - ctg a =  =   = .

Учитывая, что нормаль также как и касательная проходит через точку М(х , у ), то уравнение нормали к кривой y=f(x) в данной точке М имеет вид:

y = ×(x – x )+f(x0)

       Ясно, что если касательная параллельна оси Ох, т.е.  f ¢(x )=0 и ее уравнение имеет вид       у=у , то нормаль в этой же точке будет перпендикулярна оси Ох. Значит, ее уравнение имеет вид х=х .

В23.Производные и дифференциалы порядка выше первого функции одной переменной. Нарушение инвариантности форм записи. Линейная замена переменной. Производные функции, заданной параметрически.

Существует f’(x)  x(a,b), тогда эта производная сама является функцией х (х)=f’(x) и можно ставить о дифференцируемости этой функции.

Существует ’(x)  x(a,b), то мы называем её второй производной ’(x)f’’(x)

Диф.высших порядков не инвариантен: d2 y=d(F’(u)du) Но здесь du=g’(x)dx зависит от х и поетому мы получаем d2y=d(F(u))du+F’(u)d(du) или d2y=F’’(u)(du)2+F’(u)d2u где d2u=g’’(x)(dx)2

Дифференцирование функций, заданных параметрически

Пусть функция задана параметрическими уравнениями ,тогда , или риме:

В24.Точка монотонности функции и достаточное условие их существования.Точки экстремума функции.Необходимое условие экстремума функции..

Если x2>x1, f(x2)>f(x1), то ф-ция монотонно возрастает

Если x2>x1, f(x2)<f(x1), то ф-ция монотонно убывает

Монотонность - постоянство

Необходимые признаки:1)если ф-ция f(x) всюду в интервале возрастает, то ее производная в этом интервале неотрицательна (f`(x)>=0)

2)если ф-ция f(x) всюду в интервале убывает, то ее производная в этом интервале неположительная (f`(x)<=0)

3)если ф-ция f(x) всюду в интервале постоянна, то ее производная в этом интервале =0 (f`(x)=0)

Достаточные признаки монотонности: 1)если f`(x) в интервале положительна, то ф-ция f(x) возрастает в этом интервале.

2)если f`(x)<0, то ф-ция f(x) возрастает в этом интервале.

3)если f`(x)=0, то ф-ция f(x)=const на интервале.

x1<a<x2, x2-x1>0, x2>x1

1. если f`(a)>0, то f(x2)>f(x1)

2. если f`(a)<0, то f(x2)<f(x1)

3. если f`(a)=0, то f(x2)=f(x1)

Точка х называется точкой max ф-ции, если значение ф-ции в этой точке - наименьшее в некоторой ее окрестности.

1- локальный max

2- локальный min

3- глобальный max

4- глобальный min

если tg>0, то f`(x)>0

если tg<0, то f`(x)<0

Необходимый признак экстремума: ф-ия f(x) может иметь max и min только в тех точках, в которых f`(x)=0 или не существует.

(В них можно построить  касательных).

Достаточный признак: точка х0 является точкой экстремума, если ее производная в этой точке меняет знак:

- если с “+” на “-”, то х0- т. max

- если с “-” на “+”, то х0- т. min

В25 Теорема Роля и ее геометрический смысл.

Теорема (Ролля):

Пусть функция y=f(x) непрерывна на отрезке [a,b] и дифференцируема на (a,b). Кроме того на концах интервала она принемает равные значения f(a)=f(b), тогда  с(a,b): f(c)=0

Доказательство: Така как функция непрерывна на отрезке [a,b], то по второй теореме Вейштрасса есть наибольшее и наименьшее значение (m,M), если m=M, то f(x)const (x[a,b]) (const)’=0.

Пусть m<M, тогда либо m, либо М отлична от значений на концах отрезка. Пусть например Mf(a): c(a,b):f(c)=M, то есть точка с точка экстремума максимума следовательно по теореме Ферма f’(c)=0

Замечание: условие дифференцируемсти нельзя отбросить.

непрерывна на отрезке [a,b]

Геометрический смысл.

f’(x)=0, то касательная  оси х. Теорема не утверждает, что это единственная точка.

В26.ТеоремаЛангранжа и Коши о диф.на отрезках функциях.

Теорема Лангранджа:

Пусть функция y=f(x) непрерывна на отрезке [a,b] и дифференцируема на отрезке (а,b), то  с(a,b): f(b)-f(a)=f(c)(b-a)

Доказательство:

F(x)=f(x)+x где  - пока неизвестное число.

F(x) – непрерывна на отрезке [a,b] как сумма непрерывной функции

f(x) – дифференцируема на отрезке [a,b] как сумма дифференцируемой функции.

Выберем число , так чтобы на отрезке [a,b] F(x) принимало равное значение.

F(a)=f(a)+a

F (b)=f(b)+b

F(a)=F(b)  f(a)-f(b)=(a-b)  =[f(b)-f(a)]/[b-a]

F(x) – удовлетворяет условию теоремы Роллера на отрезке [a,b]   c(a,b):F’(c)=0, то есть F’(x)=f’(x)+ 0=f’(c)+  f’(c)=-=[f(b)-f(a)]/[b-a] То есть на кривой которая наклонена к оси х под таким же углом как и секущая [f(b)-f(a)]/[b-a]=tg=f(x)  c(a,b) Замечание:Часто точку с можно представить в

нужном виде: с=х0+∆х 0<(c-x0)/(x-x0)= <1 c-x0=(x-x0) c=x0+(x-x0)1 f(x)-f(x0)=f’(x0+∆x)(x-x0) 0<<1 ∆f(x0)=f’(x0+∆x)∆x

Если f(x), g(x) удовл. трем условиям:

1). f(x), g(x) непрерыв. на промеж [a,b]

2). f(x), g(x) деффер. на интервале (a,b)

3). g’(x)0 на интер. (a,b), то сущ. т. с

: Отметим прежде всего, что g(b)g(a), так как по теореме Ролля для функции g(x)

F(x)=(f(x)-f(a)) (g(b)-g(a))-(f(b)-f(a))(g(x)-g(a)) –вспомогательная фун-я

Требуем:1.F(x) определена и непрерывна на всем [a;b]т.к. она линейная кобминация непрерывных.2.F(x) дифференцируема на всем промежутке т.к. коомб. 3. F(a)=0 F(b)=0

F(a)=F(b)=0 – все условия т.Ролля => внутри [a;b] есть С, где F’(C)=0 выразим это f’(x)(g(b))-g(a))-(f(b)-b(a))g’c=0

Справедлива, тюк. g(b)!=g(a)по Ролю

В27.Правило Лопиталя.

Правила Лопиталя.

Это правило в случае дифференцируемости функции позволяет избавляться от неопределённостей типа 0/0 или / при вычисление пределов.

Теорема: Пусть функции f(x) и g(x) дифференцируемы в О(х0), g’(x0)0 в О(х0), f(x0)=g(x0)=0 и 

lim f’(x)/g’(x)=k (конечный или бесконечный предел), тогда  lim f(x)/g(x)=lim f’(x)/g’(x)=k

xx xx xx

Доказательство: lim f(x)/g(x)=lim [f(x)-f(x0)]/g(x)-g(x0)=lim f’(c(x))/g’(c(x))= c=c(x) лежащая между х их0 если

xx xx xx

хх0 то сх0=lim f’(x)/g’(x)=k

xx

Замечание(1): f(x0)=g(x0)=0 требование можно заменить требованием lim f(x)=0, lim g(x)=0, то есть в т х0 f(x) и

xx xx

g(x) могут иметь устранимый разрыв, действительно достаточно переопределить или доопределить f(x) и g(x) по непрерывности, так чтобы f(x0)=g(x0)=0

Замечание(2): Если  f’(x0) и g’(x0), g’(x0)0, то утверждение теоремы будет:

lim f(x)/g(x)=lim f’(x)/g’(x)=lim [(x-x0)(f’(x0)+(x-x0))]/ [(x-x0)(g’(x0)+ (x-x0))]=f’(x0)/g’(x0)

xx xx xx

Теорема: (/) Пусть функции f(x) и g(x) непрерывны в О(х0), g'(x)0 и О(х0), дифференцируемы в О(х0) и

lim f(x)=lim g(x)=;  lim f’(x)/g’(x)=k. Тогда lim f(x)/g(x)=lim f’(x)/g’(x)=k

xx xx xx xx xx

Без доказательства!

Замечание: Если функции f’(x) и g’(x) сами удовлетворяют условия теоремы то правило Лопиталя можно применить повторно:

f(x)=ex g(x)=xn x

lim ex/xn= lim ex/1!= nN lim ex/xn= lim ex/nxn-1= lim ex/[n(n-1)xn-2]=lim ex/n!=+

x + x+ x+ x+ x+ x+

f(x)=lnx

x+

g(x)=xn

lim lnx/xn= lim (1/x)/nxn-1= lim 1/nxn=0

x+ x+ x+

В28.Формула Тейлора с остаточным членом в форме Лангранжа.

Пусть на интервале [a, b] функция f(x) дифференцируема n раз и выполняются следующие равенства:

f(a) = f(b) = f '(a) = f ''(a)= ... = f (n-1)(a)=0

Тогда внутри интервала [a, b] найдется хотя бы одно значение с, при котором

f (n)(c) = 0

   Доказательство. По теореме Ролля имеем

f '(x0 ) = 0,

где a < x0 < b. Тогда f '(x) на интервале [a, x0] удовлетворяет теореме Ролля, так как, по условию, f '(a) = 0 и f '(x0 ) = 0, а потому

f ''(x1 ) = 0,

где a < x1 < x0.
   Применяя теорему Ролля последовательно к функциям f ''(x), f '''(x), ..., f (n-1)(x), найдем наконец:

(n)(с) = 0,

где a < c < xn-1 < b . Теорема доказана.
   Выведем теперь формулу Тейлора с остаточным членом в форме Лагранжа.
   Пусть функция f (x) дифференцируема n раз на интервале [a, b].
   Рассмотрим вспомогательную функцию

(x) = f (x) - P (x),

где

   Продифференцируем n раз функцию (x). Тогда будем иметь




. . . . . . . . . . . . . . . . . . . . . . . . . . . .
(n-1)(x) = f(n-1)(x) - An-1 - An(x - a),
(n)(x) = f(n)(x) - An

   Потребуем, чтобы функция (x) удовлетворяла условиям обобщенной теоремы Ролля. Тогда будем иметь

     (1)
.

   Так как функция (x) удовлетворяет условиям обобщенной теоремы Ролля, то найдется такое значение с (a < c < b), что

(n)(с) = f(n)(с) - An = 0     (2)

   Далее найдем из n первых уравнений системы (1) коэффициенты A0 , A1 , ..., An-1:

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее