Занятие 13 (АиГ1) (Основные занятия по АиГ)

2017-07-08СтудИзба

Описание файла

Файл "Занятие 13 (АиГ1)" внутри архива находится в папке "Основные занятия по АиГ". Документ из архива "Основные занятия по АиГ", который расположен в категории "". Всё это находится в предмете "линейная алгебра и аналитическая геометрия" из 1 семестр, которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "алгебра и геометрия (линейная алгебра)" в общих файлах.

Онлайн просмотр документа "Занятие 13 (АиГ1)"

Текст из документа "Занятие 13 (АиГ1)"

6


Занятие 13. Многочлены.

13.1. Корни многочлена, их кратность. Деление многочлена на многочлен (алгоритм Евклида). Целая и дробная части отношения двух многочленов.

13.2. Теорема Безу. Основная теорема алгебры многочленов.

13.3. Многочлены с действительными коэффициентами: свойство их комплексных корней; разложение над полем действительных и комплексных чисел.

Корни многочлена, их кратность. Теорема Безу. Основная теорема алгебры многочленов.

Многочленом го порядка одной переменной называется функция вида

, (1)

где - заданные числа, называемые коэффициентами многочлена.

Порядок многочлена определяется максимальной степенью . Например,

1) - многочлен 3-го порядка, т.к. - максимальная степень в данном многочлене. Этот многочлен имеет следующие коэффициенты:

2) - многочлен 2-го порядка. Его коэффициенты:

3) - многочлен 1-го порядка. Его коэффициенты:

4) - многочлен нулевого порядка, .

Корнями многочлена (1) называются решения уравнения

. (2)

Например,

1) многочлен имеет один действительный корень , т.к. уравнение имеет только одно решение ,

2) многочлен имеет два комплексных корня , являющихся решениями квадратного уравнения .

Эти примеры показывают, что многочлен с действительными коэффициентами может иметь как действительные, так и комплексные корни.

Корень многочлена (1) является корнем кратности , если он встречается раз среди всех корней уравнения (2). Например,

1) многочлен имеет один корень . Это означает, что является однократным корнем (или корнем кратности 1).

2) , - корни кратности 1 многочлена .

3) многочлен можно переписать следующим образом:

. Следовательно, многочлен имеет пять корней: . И значит,

- корень кратности 2, и - корень кратности 3 многочлена .

Пример 1. Найти корни многочлена и указать их кратность.

Решение.

- корень кратности 2, и - корень кратности 3 многочлена .

- корень кратности 5, и - корни кратности 2 многочлена .

Опять отметим, что многочлен с действительными коэффициентами из примера 1 наряду с действительным корнем имеет также комплексные корни .

Нахождение всех корней произвольно заданного многочлена часто бывает проблематичным. Если корни многочленов 1-го и 2-го порядка находятся достаточно просто, то поиск корней многочленов 3-го и 4-го порядка алгебраическими методами хотя и возможен, но уже не так прост: громоздкие аналитические выкладки (см., например, Г.Корн, Т.Корн. Справочник по математике, пункты: 1.8-3, … , 1.8.-6.) препятствуют широкому практическому применению аналитических методов нахождения корней этих многочленов. Для многочленов 5-го и более высокого порядков нахождение корней алгебраическими методами (т.е. с помощью конечного числа операций сложения, вычитания, умножения, деления, возведения в рациональную степень действительных чисел), в общем случае, невозможно. Поэтому, обычно корни многочленов выше 2-го порядка находят в приближенном виде вычислительными методами (эти методы изучаются в курсе математического анализа и численных методов). Далее рассматриваются примеры, в которых нахождение корней многочлена либо сводится к решению квадратных уравнений, либо не потребуется.

Деление многочлена на многочлен (алгоритм Евклида). Целая и дробная части отношения двух многочленов.

Рассмотрим отношение двух многочленов , называемое дробно рациональной функцией: - многочлены степени соответственно. Если , то называется правильной дробно рациональной функцией (или проще, правильной дробью). Если же , то называется неправильной дробно рациональной функцией (или неправильной дробью). Для неправильной дроби справедлива следующая теорема.

Теорема. Неправильную дробь можно разложить в сумму многочлена и правильной дроби: , где - многочлен степени , и - многочлен степени . Такое разложение единственно. Многочлен называется целой частью, правильная дробь - дробной частью, многочлен - остатком от деления многочлена на многочлен .

Нахождение целой части и остатка от деления многочлена на многочлен производится по алгоритму Евклида. Приведем применение этого алгоритма на конкретных примерах.

Пример 2. Найти целую часть и остаток от деления многочлена на многочлен .

Решение. 1-й шаг алгоритма Евклида.

Начало схемы алгоритма.

Подбираем постоянные так, чтобы при умножении на старший член делителя получился старший член многочлена . Очевидно, следует взять . Подставляем и умножаем его на делитель . В результате получим многочлен . Записываем его слева под многочленом . Находим разность и записываем этот многочлен слева под чертой под многочленом . Степень многочлена больше степени делителя (многочлена ), поэтому алгоритм Эвклида имеет продолжение.

2-й шаг. Записываем итоги вычислений 1-го шага. Прибавим слева к слагаемому новый член .

Продолжение схемы алгоритма.

Константы подбираем так, чтобы при умножении на старший член делителя получилось . Очевидно, . Подставляем и умножаем его на делитель , в результате получим многочлен . Записываем этот многочлен слева под многочленом . Находим разность , где и записываем этот многочлен слева под чертой под . Степень многочлена равна степени делителя (многочлена ), поэтому алгоритм Эвклида продолжается.

3-й шаг. Записываем итоги вычислений 2-го шага. Прибавим слева к слагаемым новый член .

Продолжение схемы алгоритма.

Константы подбираем так, чтобы при умножении на старший член делителя было равно . Очевидно, . Подставляем и умножаем его на делитель , в результате получим многочлен . Записываем этот многочлен слева под . Находим разность и записываем ее слева под чертой под . Степень многочлена меньше степени делителя , поэтому алгоритм Евклида закончился. Ответы таковы: целая часть и остаток от деления многочлена на многочлен соответственно равны и .

В окончательном виде схема алгоритма Евклида выглядит так.

Если остаток от деления многочлена на многочлен равен нулю, то многочлен нацело делится на многочлен . В этом случае многочлен называется делителем многочлена , и многочлен можно записать в виде произведения .

Пример 3. Разложить в произведение многочлен , если известно, что многочлен нацело делит многочлен .

Решение. С помощью алгоритма Евклида найдем целую часть от деления на .

Следовательно, и многочлен можно разложить в произведение: .

2. Особую роль играет деление многочлена на многочлен .

Справедлива следующая теорема Безу. Остаток от деления многочлена на многочлен равен .

Следствие теоремы Безу. Если - корень многочлена степени , то многочлен нацело делится на многочлен , т.е. , где - многочлен степени .

Основная теорема алгебры многочленов: любой многочлен степени имеет ровно корней, считая каждый корень столько раз, какова его кратность.

Согласно этой теореме любой многочлен с комплексными коэффициентами разлагается в следующее произведение

, (1)

где - все корни многочлена , имеющие кратности соответственно. Такое разложение называется разложением многочлена над множеством комплексных чисел (над полем ). При разложении многочлена над полем автоматически считается, что может принимать любые комплексные значения.

Линейные многочлены являются неприводимыми многочленами над полем . Многочлен называется неприводимым над заданным множеством чисел, если его нельзя разложить в произведение двух многочленов со степенями один и выше. Очевидно, что любой многочлен степени 1 неприводим над полем , а любой многочлен степени 2 и выше приводим над полем , т.к. согласно основной теореме его можно разложить в произведение многочленов.

Пример 4. Разложить над полем многочлен .

Решение. Согласно примеру 3 заданный многочлен разлагается в произведение . Первый множитель – многочлен имеет корень , т.к. . Следовательно, нацело делится на многочлен . По алгоритму Евклида находим результат деления на .

Значит, .

Поскольку, , получим такое разложение многочлена над полем .

Если многочлен имеет действительные коэффициенты, то наряду с его разложением над полем (когда считается комплексной величиной) возможно также разложение этого многочлена на множестве действительных чисел (над полем ), когда переменная принимает только действительные значения, и соответственно принимает только действительные значения. При разложении многочлена с действительными коэффициентами над полем следует помнить, что не все многочлены второго порядка приводимы над полем .

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее