Главная » Все файлы » Просмотр файлов из архивов » Документы » Радиолокационные и радионавигационные измерители угловых координат

Радиолокационные и радионавигационные измерители угловых координат, страница 3

2017-06-07СтудИзба

Описание файла

Документ из архива "Радиолокационные и радионавигационные измерители угловых координат", который расположен в категории "". Всё это находится в предмете "радиотехнические системы" из 9 семестр (1 семестр магистратуры), которые можно найти в файловом архиве МАИ. Не смотря на прямую связь этого архива с МАИ, его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "радиотехнические системы" в общих файлах.

Онлайн просмотр документа "Радиолокационные и радионавигационные измерители угловых координат"

Текст 3 страницы из документа "Радиолокационные и радионавигационные измерители угловых координат"

. (1.15)

Период повторения импульсов выбирается из условия однозначности отсчета дальности:

, (1.16)

которое с целью конкретизации расчета рекомендуется заменить равенством

, (1.17)

где значение коэффициента запаса . Введение коэффициента запаса приводит к увеличению минимально необходимого значения периода повторения на , где - максимальная измеряемая дальность цели. Этот дополнительный интервал времени целесообразно использовать для коррекции неидентичностей приемных трактов, обеспечив соответствующее быстродействие устройства коррекции.

1.5. Расчет полосы пропускания УПЧ

В проектируемом фазовом радиопеленгаторе усилитель промежуточной частоты является единственным устройством, фильтрующим сигнал перед чувствительным элементом углового дискриминатора - фазовым детектором. Поэтому от полосы пропускания этого устройства в существенной степени зависят точность и дальность действия угломерного канала. Для достижения наибольшего возможного в данной ситуации отношения мощностей сигнала и шума q на входе фазового детектора рекомендуется использовать УПЧ в качестве квазиоптимального фильтра и выбирать его полосу пропускания из соотношения

. (1.18)

При такой полосе пропускания потери энергии сигнала из-за неоптималъности фильтра составляют всего 1,12, т.е. значение q уменьшается при прохождении сигнала через УПЧ в 1,12 раза или примерно на 0,5 дБ по сравнению с оптимальным фильтром.

Основным фактором, препятствующим согласованной фильтрации сигнала в УПЧ, является доплеровский сдвиг частоты этого сигнала.

Максимальное значение доплеровского сдвига частоты в заданной тактической ситуации (см. рис. 1.1) составляет

, (1.19)

где - центральный угол между позицией наземного РЛ и точкой на траектории цели, соответствующей . Значение рассчитывается как

, (1.20)

где 6370 км - радиус Земли.

Доплеровский сдвиг частоты может составлять десятки килогерц, а в некоторых случаях превышать 100 кГц, что требует соответствующего расширения полосы пропускания УПЧ.

Для компенсации можно использовать оценку доплеровского сдвига частоты, получаемую в устройстве измерения скорости цели или применить автоматическую подстройку частоты (АПЧ). В обоих устройствах выходная частота первых смесителей приемных трактов приводится к номинальному значению промежуточной частоты путем изменения частоты гетеродина. Для упрощения схем устройства компенсации на рис. 1.3 и 1.5 не показаны. Однако расчет по формуле (1.19) позволяет сформулировать требования к этим устройствам.

1.6. Расчет погрешностей

Полная погрешность проектируемого угломестного канала складывается из следующих составляющих:

- флуктуационной погрешности , вызываемой шумом и помехами, поступающими на угловой дискриминатор следящего радиопеленгатора вместе с полезным сигналом;

- динамической погрешности , обусловленной изменением измеряемого угла и инерционностью следящего измерителя;

- погрешности углового шума , возникающей из-за флуктуации угла прихода отраженного от цели сигнала при "блуждании" центра отражения относительно центра цели;

- тропосферной погрешности , появляющейся в угломестном канале из-за рефракции радиоволн в тропосфере;

- аппаратурной погрешности , свойственной моноимпульсным пеленгаторам с неидентичными приемными трактами.

Обычно первые две составляющие характеризующие следящий измеритель угла , объединяют, используя так называемую суммарную погрешность следящего измерителя , дисперсия которой

. (1.21)

Тогда полная погрешность угломестного канала будет

. (1.22)

В данном разделе рассчитываются погрешности и полученные при оптимизации следящего измерителя для дальностей и соответственно, определяются оптимальные полосы пропускания следящего измерителя и при этих вариантах оптимизации и выбирается тот вариант, при котором достигается максимальная точность на заданной или выбранной из тактических соображений дальности до цели. Точность измерения угла оценивается на всех дальностях от до .

Погрешности следящего измерителя. Ниже излагается методика расчета суммарной погрешности следящего измерителя угла с использованием соотношения (1.21). При этом считается, что:

1. закон изменения угла , вызываемого движением цели и/или объекта, на котором установлен РЛ, - детерминированный с известным значением первой производной угла по времени ;

2. структура следящего измерителя задана и на устойчивость не проверяется;

3. оптимизация измерителя производится на основе критерия минимума дисперсии суммарной погрешности:

. (1.23)

Основные соотношения. При расчете точностных параметров угломерного канала используются соотношения, приведенные в табл.1.1. Аббревиатура "СА" в таблице означает степень астатизма следящего угломера, а обозначения H(p) и соответствуют операторному коэффициенту передачи фильтра в цепи слежения за углом и оптимальной полосе пропускания следящего измерителя, найденной с использованием критерия (1.23). Принято, что в измерителе с астатизмом 1 порядка имеется интегратор с коэффициентом передачи и пропорционально- интегрирующий фильтр. Постоянные времени форсирующего и инерционного звеньев этого фильтра обозначены и соответственно. Рекомендуется считать, что =1с.

В измерителе с астатизмом 2 порядка функцию сглаживания флуктуаций выполняет двойной интегратор с коэффициентом передачи и корректирующее звено с постоянной времени .

Таблица 1.1

СА

H(p)

1

2

Входящая в приведенные в табл.1.1 соотношения величина представляет собой эквивалентную спектральную плотность (на нулевой частоте) флуктуаций на выходе фазового детектора, вызываемых шумом, действующим на его входе. Величина при измерении углов имеет размерность рад2/Гц и в предположении равномерности спектра флуктуаций в пределах полосы пропускания измерителя рассчитывается по формуле

, (1.24)

где M - масштабный коэффициент; q - отношение мощностей сигнала и шума на входе фазового детектора; - ширина спектра флуктуаций на входе фазового детектора, значение которой определяется полосой пропускания УПЧ, т.е.

. (1.25)

Масштабный коэффициент M связывает средние квадратические погрешности определения координат объекта и измерения информативного параметра сигнала . Соответствующее соотношение называют основным уравнением для погрешностей данного РТУ. Для фазового радиопеленгатора, в котором , а , основное уравнение погрешностей имеет вид

. (1.26)

Из соотношения (1.26) следует, что размерность масштабного коэффициента M есть рад /рад или град /град .

Значение масштабного коэффициента, как следует из (I.4), рассчитывается как

. (1.27)

Максимальная точность определения утла достигается на равнофазном направлении, что имеет место в следящих фазовых радиопеленгаторах с поворотной базой, в которых . При

. (1.28)

Включение масштабного коэффициента M в (1.24) отображает тот факт, что проникающий на выход фазового детектора шум воспринимается следящей за углом системой как случайное изменение угла и является источником флуктуационной угломерной погрешности .

При расчете погрешностей угломерного канала следует обращать внимание на размерности используемых величин. В частности, размерность , равная рад2/Гц, получается из-за того, что в (1.24) входит сомножитель , где - дисперсия оценки фазы, характеризующая потенциальную точность измерения фазы и имеющая размерность рад2.

Погрешности угломерного канала рекомендуется выражать в угловых секундах (1 угл.с = 1/3600 градуса). Поэтому значение можно выражать в (угл.с)2/Гц и использовать вместо (1.24) формулу

. (1.29)

Порядок расчета. Расчет погрешностей , и рекомендуется разделить на четыре этапа (i=1,…,4), отличающихся значениями дальности цели и дальностями , для которых оптимизируется следящий угломер. Эти этапы и соответствующие им и указаны в табл. 1.2, в которой приведены подлежащие расчету или используемые при расчете величины.

Формулы для нахождения флуктуационной и динамической погрешностей, а также оптимальной полосы пропускания следящего измерителя следует брать из табл. 1.1. Результаты вычислений заносятся в таблицу, форма которой соответствует табл. 1.2.

Таблица 1.2

N

R

1

2

3

4

При вычислениях считается, что равна заданной погрешности на дальности , а минимальное значение достигается при оптимизации измерителя для этой дальности, т.е. при . В оптимизированном следящем измерителе выполняется условие

, (1.30)

которое справедливо только на дальности и при приведенных в табл. I.I формах H(p).

На рис. 1.9 приведена схема "алгоритма" расчета погрешностей и выбора той дальности , для которой целесообразно оптимизировать измеритель в заданной тактической ситуации. Соответствующие этой дальности значения полосы пропускания измерителя и точностных параметров используются в последующих расчетах и при разработке требований к элементам следящего радиопеленгатора. Выбор основан на сравнении (символ на рис. 1.9) погрешностей . Ниже приведены особенности расчета, выполняемого на разных этапах.

Этап I ( ). По заданному значению определяются с помощью (1.30) погрешности и . Используя табл. I.I и считая =1с, последовательно находят и . Из соотношений (1.29) и (1.28) рассчитывается то значение отношения мощностей сигнала и шума на входе фазового детектора , при котором обеспечивается заданное значение на дальности .

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5183
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее