85918 (На чём стоит математика)

2016-08-02СтудИзба

Описание файла

Документ из архива "На чём стоит математика", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85918"

Текст из документа "85918"

НА ЧЕМ СТОИТ МАТЕМАТИКА

Н.И. Кривохатько

Математика - это то, посредством

чего люди управляют природой

и собой.

А. Н. Колмогоров.

Не будет преувеличением сказать, что, начиная с 17 века, наука превратилась в доминирующий, стремительно набирающий вес фактор развития общества. Наука позволяет находить оптимальные решения в различных ситуациях, указывает пути исследования еще не решенных проблем, подсказывает, куда в данный момент целесообразнее всего направить силы и средства. В большинстве своем мы безоговорочно верим в мощь науки и ее непогрешимость.

Но насколько оправдана такая уверенность (местами даже вера)? Насколько в действительности совершенны инструменты науки и непогрешимы ее выводы? Возьмем на себя смелость усомниться в этом. И в оправдание этих сомнений приведем одно рассуждение. Речь в нем пойдет не о неадекватности какого-то конкретного подхода в какой-то прикладной науке - нет, темой исследования станет предполагаемое внутренное несовершенство науки, которая сама является критерием строгости и как бы даже "научности" любой другой науки. Речь пойдет о математике, причем о самих ее истоках, о тех ее представлениях, которые сложились в незапамятные времена и в течение столетий (точнее, даже тысячелетий) являлись ее незыблемым фундаментом - речь пойдет о числах, о смысле чисел как таковых и способах их представления.

Понятие числа находится в основании математики и ее применений. Отсюда, вопрос логического обоснования данного понятия является чрезвычайно важным для всей математики. Но обоснование чисел любого вида сводится в конце-концов к обоснованию понятия натурального числа. Существует много теорий натурального числа, но каждая из этих теорий имеет свои недостатки, поэтому вопрос логического обоснования понятия числа нельзя считать окончательно разрешенным.

Понятие числа отличается от многих других понятий математики своей первичностью. Это означает, что в преобладающем большинстве логических построений математики понятие числа относится к разряду тех понятий, которые не определяются через другие понятия, но вместе с аксиомами входят в состав первичных данных. Это означает, что математическая наука не содержит в себе ответа на вопрос "Что такое число?" - такого ответа, который заключался бы в определении этого понятия через другие, ранее установленные понятия; математическая наука дает этот ответ в иной форме, перечисляя свойства чисел, выраженные в аксиомах.

Но чем, скажем так, определяется "неопределяемость" понятия? С одной стороны, любое определяемое сейчас понятие в свое время было неопределяемым (чаще в том смысле, что отсутствовало вообще), но позже, в процессе развития познания, определения появлялись. С другой стороны, неопределяемость - это тоже как бы определение, но определение скорее состояния познания в контексте его возможностей. Следовательно, определяемость любого понятия зависит от возможностей познания, которые различны на каждом конкретном этапе развития общества. Но в ситуации, когда возможностей не хватает, а делать что-то надо, мы поступаем просто - используем первое, что дает хоть какое-то решение проблемы. Поэтому и в синтезе самих оснований математики - представлений о числе и построении числовых множеств присутствовал (и присутствует до сих пор) пусть спонтанный, пусть объективно обусловленный, но - произвол. Это утверждение мы также попробуем обосновать в данной работе.

Мы вправе спросить: а возможно ли в принципе существование неопределяемых понятий? При общепринятых способах изложения оснований математики неопределяемые понятия (число, точка и т. д.) возникают как бы из ничего, из пустоты. Но ведь законы мироздания универсальны, поэтому и в области построения и преобразования формальных понятий должен действовать закон, аналогичный закону сохранения вещества: ничего нельзя построить из ничего, из пустоты. Поэтому мы можем утверждать, что возникновение "неопределяемого" понятия числа тем не менее было обусловлено существованием каких-то более общих представлений: пусть не математических, а качественно иного смыслового ряда; пусть не оформленных логически, вербально, но существующих, тем не менее, реально. Именно содержание таких представлений (общих представлений о структуре действительности) обусловило в свое время "отрыв" числа от материального носителя.

Знакомство с математикой традиционно начинается с построения числовых множеств, а основным рабочим образом, используемым для этой цели, является прямая линия - числовая ось. Числа на такой прямой изображаются точками. Ничто не мешает нам определить точки, изображающие числа на числовой оси, как узлы некой одномерной сети, а промежутки между точками - как связи между этими узлами. Узлы и связи между ними образуют систему. Любая система обладает конкретной конфигурацией - структурой, а структура - это не что иное, как пространство. Таким образом, построение числовых множеств и изображение их элементов точками на числовой оси является не чем иным, как конструированием некоего пространства. Исторически первым пространством, сконструированным таким образом, было пространство натуральных чисел.

Натуральные числа - это числа, используемые для счета:

1, 2, 3, 4, ..., n, ...

Натуральные числа образуют множество, называемое множеством натуральных чисел. Множество всех натуральных чисел обозначается символом N:

N = {1; 2; 3; ...; n; ... }.

Множество натуральных чисел является упорядоченным множеством, т. е. для любых двух натуральных чисел m и n имеет место одно из следующих соотношений:

либо m = n;

либо m < n;

либо n < m;

Наименьшим натуральным числом является 1 (единица).

В множестве натуральных чисел вводятся две основные арифметические операции - сложение и умножение. Каждой паре натуральных чисел (n;p) ставится в соответствие натуральное число s, называемое их суммой. Каждой паре натуральных чисел (n;p) можно также поставить в соответствие натуральное число m, называемое их произведением. Таким образом, сумма и произведение любых двух натуральных чисел опять будут натуральными числами. Поэтому говорят, что множество всех натуральных чисел замкнуто относительно операций сложения и умножения.

----*--------*--------*--------*-- ... --*-- ...

1 2 3 4 n

Множество целых чисел есть множество, полученное в результате добавления к множеству всех натуральных чисел новых объектов - числа нуль и отрицательных целых чисел. Число нуль, обозначаемое символом 0 и отрицательные целые числа вводятся следующим образом. Сумма любого натурального числа n и числа 0 есть число n:

n + 0 = n;

Любому натуральному числу n соответствует единственное отрицательное число -n такое, что сумма чисел n и -n равна нулю:

n + (-n) = 0;

Число -n называется противоположным числу n. Число, противоположное числу -n, есть число n: -(-n) = n. Натуральные числа в множестве целых чисел называются положительными целыми числами. Множество целых чисел часто обозначается Z.

Множество целых чисел является упорядоченным множеством, т. е. для любых двух целых чисел m и n справедливо одно и только одно из следующих соотношений:

либо m = n;

либо m < n;

либо n < m;

Множество целых чисел замкнуто относительно операций сложения, умножения и вычитания, т. е. для любых двух данных целых чисел существует единственное третье целое число, являющееся их суммой; существует единственное целое число, являющееся их разностью и, наконец, единственное целое число, являющееся из произведение. Относительно операции деления множество целых чисел не является замкнутым - частное от деления целого числа на нуль либо не существует, либо определено не единственным образом.

...--*-- ... --*----*----*----*----*----*----*-- ... --*-- ...

-n -3 -2 -1 0 1 2 3 n

Рациональные дроби появились, как форма записи чисел, более "мелких", нежели натуральные. Рациональную дробь записывают в виде m/n, где целое число m называют числителем дроби, а целое число n не равное нулю - ее знаменателем.

Натуральные числа, целые числа, рациональные дроби и нуль образуют множество рациональных чисел. Рациональное число - это такое число, которое может быть представлено в виде m/n, где |m| и n - взаимно простые (несократимые) натуральные числа. В случае, когда m не делится на n нацело, частное от деления m на n представляет собой не совпадающее ни с каким целым числом рациональное число.

Всякое рациональное число m/n может быть представлено либо в виде конечной, либо в виде бесконечной периодической дроби; обратно, любая конечная, а также любая бесконечная периодическая десятичная дробь есть запись некоторого рационального числа.

Последнее утверждение (особенно в части, касающейся бесконечных десятичных периодических дробей) вызывает определенные сомнения, суть которых будет изложена ниже. Сейчас же продолжим тему цитированием фрагмента текста из учебника Н. Н. Лузина "Дифференциальное исчисление" (Москва, "Высшая школа", 1961 г.).

"Считается, что одних только рациональных чисел вполне достаточно для нужд измерительной практики, ибо они позволяют выполнять измерения с какой угодно степенью точности. Но одних только рациональных чисел становится уже недостаточно, когда надо решать вопросы геометрии, механики и теоретической физики с абсолютной точностью, ибо здесь необходимо уже знание так называемых иррациональных чисел. Как возникают эти новые числа и как их следует понимать?

Последовательность рациональных чисел сама по себе есть всюду плотная, ибо между двумя такими числами - какими бы близкими друг к другу они ни были - всегда можно найти сколько угодно промежуточных рациональных чисел. Поэтому-то на первый взгляд и кажется, что для каких-нибудь новых чисел в последовательности рациональных чисел как будто совсем не остается никакого места.

Однако указанное первое впечатление оказывается глубоко ошибочным, потому что в последовательности рациональных чисел повсюду имеются просветы, как это становится ясным, когда сопоставим последовательность всех рациональных чисел с последовательностью точек на прямой линии.

----------*===================*----------

O a M

Чтобы осуществить такое сопоставление, возьмем прямую линию бесконечную в обе стороны, на ней выберем начальную точку O и примем определенную единицу длины для измерения отрезков. Очевидно, всегда можно построить отрезок, имеющий своею длиною любое заранее заданное рациональное число a и нанести его вправо либо влево от O, смотря по тому, будет ли a положительно или отрицательно. Таким образом мы получили определенную концевую точку M, которую можно рассматривать как точку, соответствующую рациональному числу a. Следовательно, можно сказать, что всякому рациональному числу соответствует одна и только одна точка на прямой.

Полученную точку M мы изображаем черной и непрозрачной; она-то и сопоставляется с взятым рациональным числом a, называющимся абсциссой точки M. Когда это проделано со всяким рациональным числом a, прямая окажется покрытой густой сетью черных непрозрачных точек M, как бы осевших на прямой и населяющих - без пустот - каждый ее участок, т. е. отрезок, где бы он ни лежал и как бы мал он ни был. У всякой из этих точек M имеется своя абсцисса a, являющаяся рациональным числом. Чем больше арифметически, т. е. беззначно, величина абсциссы a, тем дальше от начала O лежит точка M.

Это и есть искомое нами сопоставление последовательности рациональных чисел с точками прямой, при котором все точки M полученной черной непрозрачной сетки имеют, очевидно, совершенно такое же взаимное расположение друг относительно друга, какое имеют между собой их рациональные абсциссы a. Конец M всякого отрезка OM, соизмеримого с взятой единицей длины, заведомо содержится в сети, ибо такая точка M имеет рациональную абсциссу. Точки с рациональными абсциссами мы, для краткости речи, будем называть просто рациональными точками и составленную из таких точек сеть будем называть тоже рациональной сетью.

Если бы каждая точка прямой оказалась содержащейся в построенной нами сети, т. е. если бы совсем не существовало никаких несоизмеримых отрезков, тогда все дело обстояло бы необыкновенно просто: в этом случае каждая точка нашей прямой имела бы рациональную абсциссу и, значит, мы не имели бы ни малейшей нужды в каких-либо новых числах, ибо тогда одних только рациональных чисел было бы достаточно для выражения всех теоретических соотношений.

Но действительность оказывается гораздо сложнее, и одним из великих открытий, сделанных в глубокой древности, является установление наличия отрезков, несоизмеримых с данной единицы длины. По-видимому, первым примером этого рода была диагональ квадрата, сторона которого принята за единицу длины.

Отложив такой отрезок от начала O, мы получим точку M, которая не соответствует никакому рациональному числу и у которой, строго говоря, пока нет никакой абсциссы.

-------*===================*=======*-------

O 1 M

А так как имеется бесчисленное множество различных длин, несоизмеримых с единицей масштаба, то прямая линия оказывается в бесконечное число раз больше богатой своими точками, чем последовательность рациональных чисел своими числами. Значит, рассматриваемое сопоставление точек и чисел вынуждают нас признать некоторую неполноту в последовательности рациональных чисел, тогда как прямой линии мы приписываем всю полноту и абсолютное отсутствие каких-либо просветов, т. е. сплошность или непрерывность.

Поскольку последовательность рациональных чисел оказывается недостаточной, является необходимость в пополнении нашей последовательности чисел таким образом, чтобы она получила такую же сплошность, т. е. полноту или непрерывность, как и сама прямая линия. Это достигается введением иррациональных чисел, определяемых лишь при посредстве рациональных чисел.

Итак, мы пришли к следующему положению: иррациональные числа совершенно заполняют все просветы, имеющиеся в последовательности рациональных чисел, т. е. мы принимаем, что всякой точке прямой соответствует число, рациональное или иррациональное, называемое абсциссой этой точки, и обратно.

Арифметически же иррациональные числа могут быть представлены в виде бесконечных десятичных дробей.

Возводившееся веками здание современной математики (здание, фундаментом которого является представление о числе) выглядит столь грандиозным и совершенным, что сама мысль о наличии в этом фундаменте изъянов кажется кощунственной. Уж точно кощунственным прозвучит утверждение, что все это циклопическое сооружение опирается на ложные представления - представление о "сплошности" (бесструктурности) математической прямой (хорошо известной нам числовой оси) и представление о бесструктурности математической точки. Очевидно, эти представления сформировались на основе других, более общих представлений о свойствах материи - о существовании в природе бесструктурных объектов - атомов. В этом можно увидеть признак определенного рода инерции нашего мышления. Ведь несмотря на то, что около века известен установленный факт о наличии у атома сложной структуры, мы по-прежнему зовем эти объекты атомами, т. е. "неделимыми". Но только ли в инерции дело? Скорее всего, дело здесь в дефиците принципиально новых, адекватных представлений о свойствах материи. Существует и еще одна причина появления ложных представлений о свойствах математической прямой - о ее "сплошности" и она заключается в следующем. Как уже упоминалось, числа возникли из практической потребности в счете и в оном качестве они существовали в течение довольно длительного промежутка времени. Но на определенном этапе эволюции представлений о числе произошел качественный скачок - т. н. "отрыв" числа от материального носителя. Это и обусловило появление абстрактных, идеальных объектов с произвольно приписанными им свойством "сплошности", т. е. бесструктурности - математической прямой и математической точки.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее