46216 (О некоторых задачах анализа и трансформации программ)

2016-08-02СтудИзба

Описание файла

Документ из архива "О некоторых задачах анализа и трансформации программ", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "46216"

Текст из документа "46216"

О некоторых задачах анализа и трансформации программ

С.С. Гайсарян, А.В. Чернов, А.А. Белеванцев, О.Р. Маликов, Д.М. Мельник, А.В. Меньшикова

Аннотация.

В настоящей статье обсуждаются некоторые перспективные направления исследований, проводимые в отделе компиляторных технологий Института системного программирования РАН. Методы анализа и трансформации программ, ранее применявшиеся в основном в оптимизирующих компиляторах, в настоящее время находят применение при решении множества смежных задач, таких как обеспечение безопасности программ, генерация тестов для программ и т. д.

1. Введение

В настоящей статье обсуждаются некоторые перспективные направления исследований, проводимые в отделе компиляторных технологий Института системного программирования РАН. Методы анализа и трансформации программ, ранее применявшиеся в основном в оптимизирующих компиляторах, в настоящее время находят применение при решении множества смежных задач, таких как обеспечение безопасности программ, генерация тестов для программ и т. д.

В отделе ведётся работа и в традиционной области оптимизации программ. Упор делается на разработку новых методов анализа указателей в программах на языке Си. Также проводятся исследования так называемых "полустатических" (profile-based) методов оптимизации программ. Такие методы заключаются в использовании на стадии оптимизации кода информации, накопленной с предварительных её запусков.

Данная работа посвящена рассмотрению трёх направлений. Во-первых, это так называемая маскировка программ, преследующая цель, полностью сохранив пользовательское поведение программы, изменить её текст так, что обратная инженерия или повторное использование ее фрагментов или программы целиком становится сложным. Во-вторых, это задачи автоматической оптимизации программы для работы на многопроцессорных системах с общей памятью путём разбиения её на нити. В-третьих, это задача автоматического выявления уязвимостей в программе.

Для поддержки работ по исследованию методов анализа и трансформации программ в отделе разработана интегрированная инструментальная среда (Integrated Research Environment, IRE), которая содержит большое количество различных алгоритмов анализа и трансформации программ и предоставляет удобный интерфейс пользователя.

Данная работа имеет следующую структуру: в разделе 2 мы рассматриваем задачу автоматического разбиения программы на нити, в разделе 3 рассматриваются задачи маскировки программ, а в разделе 4 задача автоматического выявления уязвимостей. Далее в разделе 5 кратко описывается интегрированная среда IRE, её состав и внутреннее представление MIF, используемое всеми компонентами IRE. Наконец, в разделе 6 мы формулируем выводы данной работы и даём направления дальнейших исследований.

2. Разбиение программ на нити и повышение локальности

В настоящее время широко распространены рабочие станции и персональные компьютеры, содержащие несколько центральных процессоров. Массовые многопроцессорные системы обычно содержат 2, 4 или 8 процессоров, работающих над общей памятью с одинаковым для всех процессоров временем доступа (SMP). Для максимального использования возможностей SMP-систем в вычислительно-интенсивных приложениях необходимо максимально использовать "легковесные" процессы (нити). В этом случае накладные расходы на коммуникацию минимизированы, так как все нити разделяют одно адресное пространство, а синхронизационные операции выполняются проще и быстрее, чем для обычных ("тяжелых") процессов.

Известно, что большинство программ при работе демонстрируют хорошую локальность, т.е. работают над близко расположенными в памяти данными, или выполняют одни и те же инструкции. На этом наблюдении основана работа процессорных кэшей. Для наиболее полного использования возможностей кэша необходимо улучшать локальность программы.

В данном разделе мы представим новый алгоритм для разделения программы на нити, который улучшает локальность программы в целом. Полученные экспериментальные результаты показывают оправданность применения нового алгоритма для разбиения на нити программ без чёткой циклической структуры, которые не могут быть разбиты на нити традиционными методами. Основным выводом работы является то, что соображения локальности должны приниматься во внимание при разделении программы на нити для небольшого числа процессоров.

Системы с разделяемой памятью наиболее удобны для программиста параллельных приложений. Более того, часть работы по распараллеливанию последовательного кода может быть выполнена компилятором. Существует много исследований по автоматическому распараллеливанию циклов и рекурсивных процедур на таких системах. Некоторые разработки реализованы в промышленных компиляторах, например, IBM Visual Age C++, Intel C++ Compiler, SGI MIPSPro, REAPAR и других.

В последнее время проводятся исследования по автоматическому распарал-леливанию любого последовательного кода. Предложено несколько подходов, таких, как управление выполнением нитей (thread-level speculation) [6], коммутативный анализ, динамическое распределение задач на нити (dynamic task scheduling) [5], автоматическое разделение на нити на этапе компиляции. Часть предложенных алгоритмов проверена авторами на эмуляторах, часть реализована в существующих исследовательских компиляторах, например, в компиляторе SUIF Стенфордского университета [7].

Формализация понятия локальности проведена в [8]. Рассматривается два вида событий локальности:

Событие временной локальности происходит при повторном доступе к ячейке памяти, уже имеющейся в кэше.

Событие пространственной локальности происходит при доступе к ячейке памяти, расположенной в блоке, уже загруженном в кэш при обращении к какой-либо другой ячейке.

Для увеличения количества событий локальности в последнее время предложено большое количество оптимизирующих преобразований программы. Основными методами являются:

Группировка инструкций, использующих одни и те же данные (locality grouping), для увеличения количества событий временной локальности.

Упаковка данных в памяти (data packing) для увеличения количества событий пространственной локальности.

Перестановка процедур, базовых блоков и т.п.

Целью данной работы является исследование вопроса о том, как может быть проведено разделение программы на потоки для увеличения количества событий локальности программы в целом. Для этого предлагается использовать эвристический алгоритм разделения программы на нити, учитывающий в процессе разделения возникающие события локальности и динамически подстраивающий параметры эвристик.

2.1. Алгоритм разбиения программы на нити

В настоящем разделе рассматривается построение промежуточного представления программы, над которым работает алгоритм, а также подробно описывается сам алгоритм разбиения программ на нити. Подробное описание алгоритма можно найти в [3]. Алгоритм состоит из трех частей:

Построение ценовой модели, отражающей свойства локальности

Разбиение программы на нити

Дополнительные оптимизации

Рис. 1. Пример функции и ее DDG.

2.1.1. Граф зависимостей по данным

При разделении программы на нити прежде всего нужно учитывать зависимости по данным. Поэтому естественно потребовать, чтобы промежуточное представление программы содержало легкодоступную информацию о зависимостях по данным между различными частями программы. В то же время необходимо максимально отразить сведения о "естественном" параллелизме программы, причем на разных уровнях - от отдельных инструкций, до более крупных программных блоков.

Представлением, обладающим всеми необходимыми нам свойствами, является иерархический граф зависимостей по данным, используемый в [9] (data dependence graph, DDG). Узлом такого графа может являться:

Простой оператор (сложение, умножение, сравнение, присваивание и т.д.)

Более сложный оператор (условный оператор, оператор цикла и т.д.)

Граф зависимостей по данным следующего уровня, инкапсули-рующий свойства соответствующего программного блока

Дуги графа DDG представляют собой зависимости по данным между узлами. Более формально, пусть u и v - узлы DDG, причем в последовательной программе u предшествует v. Дуга (u, v) входит в граф тогда и только тогда, когда между u и v есть зависимость по данным одного из трех типов:

"запись-чтение" (в узле v необходимы результаты вычислений узла u),

"чтение-запись" (в узле v записывается переменная, значение которой считывается в u),

"запись-запись" (оба узла записывают одну и ту же пере-менную).

Наличие одной из указанных зависимостей по данным между узлами говорит о том, что при параллельном выполнении программы для получения результатов, совпадающих с последовательной версией, необходимо выполнить u раньше, чем v.

Легко заметить, что граф зависимостей по данным является ориентированным ациклическим графом. Это объясняется тем, что циклы в DDG означают наличие циклических зависимостей по данным, возможных, в свою очередь, только в операторах цикла исходной программы. Но циклы, как и другие сложные операторы, раскрываются на более низком уровне иерархии, обеспечивая разрыв таких зависимостей по данным. Это свойство графа будет использоваться нами в дальнейшем.

Пример функции и ее графа зависимостей по данным приведен на Рис. 1. DDG состоит из трех узлов: двух простых узлов и оператора цикла, раскрывающегося в DDG второго уровня.

Граф зависимостей по данным строится для каждой функции программы. Алгоритм построения состоит из следующих этапов:

Построение графа потока управления программы.

Выбор программных блоков, которые будут узлами текущего уровня иерархии DDG.

Нахождение зависимостей по данным между этими узлами с помощью алгоритма достигающих определений.

Если необходимо, продвинуться на следующий уровень иерархии и достроить граф.

Для того, чтобы отразить на графе побочные эффекты работы функции, в графе вводится специальный узел EXIT. Все узлы, генерирующие побочные эффекты (например, осуществляющие запись в глобальную переменную), связаны дугой с узлом EXIT. Все этапы алгоритма разделения на нити, описанные ниже, работают с представлением программы в виде графа зависимостей по данным.

2.1.2. Ценовая модель

Нашей целью является построение разбиения программы на нити, максимально использующего возникающие события локальности. Чтобы иметь возможность судить о степени оптимальности того или иного разбиения, необходимо ввести некоторую ценовую модель. Так как мы оптимизируем время выполнения программы, то естественно ввести веса узлов графа зависимости по данным, равные времени выполнения узла в последовательной программе.

Время выполнения узла может быть найдено с помощью профилирования программы. Для этого необходимо инструментировать исходный код программы, вставляя вызовы функций из библиотеки поддержки, вычисляющих время выполнения инструкций, и выполнить программу на нескольких наборах типичных входных данных. Для получения более точных результатов можно воспользоваться высокоточными аппаратными счетчиками, имеющимися на большинстве современных архитектур (например, инструкцией RDTSC для Pentium III и выше). Эта оценка времени выполнения точно показывает реальное время выполнения программы, но затрудняет эмуляцию кэша на этапе разделения на нити, так как сложно определить, насколько уменьшится время выполнения узла при попадании в кэш (возможно, при профилировании это попадание уже произошло).

Ценовая модель должна также отражать события локальности, происходящие во время выполнения программы. Статических весов для узлов DDG для этой цели недостаточно. Необходима эмуляция кэша в процессе разделения на нити и соответствующая корректировка времени выполнения узла.

2.1.3. Разбиение на нити

На этом шаге производится собственно разбиение графа зависимостей по данным на нити. Количество нитей является параметром алгоритма. Так как целью разбиения является получение выигрыша по времени, возникающего из-за увеличения количества событий локальности в каждой нити, то необходимо привязать каждую нить к одному конкретному процессору или, точнее, к конкретному кэшу. Поэтому количество нитей, на которые производится разбиение, обычно равно количеству процессоров в системе.

Алгоритм разбиения состоит в итерировании списка узлов графа, еще не назначенных конкретной нити, и определения нити для какого-либо из узлов (группы таких алгоритмов обычно называются list scheduling). На каждом шаге такой алгоритм делает локально оптимальный выбор. Это значит, что при выборе очередного узла из списка делается попытка присвоить его каждой из имеющихся нитей, после чего выбирается лучшая.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее