23144 (Контракция и тектогенез перисферы)

2016-08-02СтудИзба

Описание файла

Документ из архива "Контракция и тектогенез перисферы", который расположен в категории "". Всё это находится в предмете "география" из 3 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "география" в общих файлах.

Онлайн просмотр документа "23144"

Текст из документа "23144"

Контракция и тектогенез перисферы

В. В. Орлёнок, доктор геолого-минералогических наук

В основе механизма формирования оболочек Земли лежат, как было показано, процессы физико-химичесиких реакций и последующая термогравитационная дифференциация в области внешнего ядра и в астеносфере. Эволюция протовещества сопровождается ростом металлического ядра, что неизбежно ведет к уплотнению глубинного вещества и уменьшению общего объема Земли. Рассматриваемый процесс усиливается потерей массы за счет диссипации водорода, гелия, аргона и, возможно, других летучих, а также теплопотерями. К другим летучим относятся пары и газы воды, азота, хлора, серы, фтора, углекислого газа, вулканические дымы HСl и HF и др., перебрасываемые из недр Земли через астеносферу на поверхность, в гидросферу и атмосферу, захороняемые в породах литосферы. При этом только уплотнение первичного вещества в результате распада дигидрита протовещества с плотностью 2,9 г/см3 и наращивания металлического ядра плотностью 7,5 г/см3 (без учета сжатия) должны уменьшить объем Земли на 0,421027 см3 (Кесарев, 1976). Объем сокращается также за счет уменьшения массы Земли и общего охлаждения (теплопотери). Например, убыль массы только за счет диссипации водорода (Н) составляет 3,61025 г, гелия (4Не) – 11020 г, аргона (40Ar) – 6,51019 г, других летучих (N2C, Cl, S) – 11,41022 г и воды – 4,21024 г, что в сумме составляет около 4,21025 г. Полученная величина сравнима с массой каменной оболочки плотностью 2,67 г/см3 и толщиной 33 км (до границы Махоровичича), равной 51025 г. Поскольку масса современной Земли равна 5,941027 г, то масса молодой Земли с учетом полученных данных была на 4,21025 г больше, т.е. 5,9821027 г, или примерно 6,01027 г. Следовательно, ее радиус был больше современного на 780 км, а средняя плотность меньше на 1,68 г/см3 (Кесарев, 1976). Поскольку в первый миллиард лет жизни планеты шло формирование рекреационных зон, то вследствие увеличения в них объема протовещества Земля первоначально испытала умеренное расширение, которое можно оценить величиной 150 км (Орлёнок, 1980). В последующем это расширение сменилось прогрессирующим сжатием из-за начавшегося процесса аккреции и диссипации массы. С учетом приведенных цифр общее уменьшение радиуса Земли за период около 3,9 – 4,0109 лет составило 630 км. Возникает вопрос: а какова величина прироста радиуса за счет выпадения на поверхность Земли космического вещества в виде метеоритов, тектитов и др.? Анализ содержания микрометеоритного вещества в морских осадках (Лисицын, 1974) и скважинах ледников Гренландии и Антарктиды позволил Э. В. Соботовичу (1976) оценить их ежегодную массу в 1012 г (1 млн. т). С учетом всей поверхности Земли, равной 5,1108 км2, на 1 км2 приходится 210-7 г/см2. Если после образования планеты среднее ежегодное количество поступавшего вещества не отличалось от наблюдаемого за последние сотни лет (1012 г), то за историю Земли (4109 лет) должно было выпасть на поверхность М = 1012 г/год4109 лет = 41021 г. Следовательно, на каждый квадратный сантиметр площади выпало 210-7 г1010 г = 2103 г. Если вес 1 см3 космического вещества положить равным 10 г, то это означает, что общая мощность выпавшего материала составила не более 2 м (Орлёнок, 1980). Примерно такое количество космического вещества обнаруживается в соляных отложениях и глинах в виде оплавленных сферу, чаще всего микронного диаметра. Предположение же о том, что Земля в настоящее время находится в полосе, насыщенной космической пылью, не подтверждается изучением зодиакального свечения, согласно которому в окрестностях Земли одна микрочастица приходится на 10 км3. Следовательно, приращение радиуса Земли за счет последующего выпадения космического вещества на ее поверхность весьма невелико, а его роль в седиментации – ничтожна.

Итак, уменьшение объема Земли должно сопровождаться сокращением площади ее поверхности. Как будет происходить этот процесс? Анализ гипсометрической кривой и данные по поверхности выравнивания показывают, что примерно 90% поверхности Земли занимают равнины и лишь около 10% – горные вулканические образования и глубоководные желоба. В общепланетарном масштабе рельеф Земли представляет собой две поверхности выравнивания, ступенью материкового склона смещенные относительно друг друга. Это континентальные и океанические платформы. Внутри их различают ступени более высокого порядка, а по границам равнин, как правило, располагаются линейно вытянутые узкие горные области. Лестницы террас на их склонах отчетливо фиксируют этапы относительного опускания прилегающих платформенных равнин.

Рельеф Земли отображает прежде всего уровни различного опускания ее поверхности. Все горные системы располагаются по границам этих ступеней, т.е. по границам различно опущенных относительно друг друга поверхностей выравнивания.

Теперь вспомним, что океанообразование сопровождалось обширным и многократным вулканизмом, выносом эндогенной воды и проседанием дна котловин. Каменная оболочка перисферы, чутко следуя уменьшающемуся объему сферы, пассивно «садится» в разреженное пространство астеносферы, как только скопившиеся здесь летучие, избытки пепла и магмы оказываются переброшенными на поверхность планеты. Легкая перисфера опускается благодаря образующемуся недостатку масс под ней – в астеносфере, которая, в свою очередь, испытывает нисходящее движение по радиусу за сжимающейся сферой Земли (Орлёнок, 1980). При этом в верхах астеносферы происходит скопление выплавок материала с относительно легким удельным весом (металлы опускаются к ее подошве) и газообразных продуктов дифференциации. Отсюда блоки перисферы пассивно следуют вдоль радиуса по мере дегазации и вулканизма астеносферы, т.е. немедленно занимают «освободившееся» сферическое пространство.

Все это находит подтверждение в приуроченности трапповых провинций континентов к синеклизам платформ, т.е. к зонам опусканий перисферы. После завершения цикла магматизма регион, как правило, испытывает погружение и трансгрессию. Например, заложению многих синеклиз и прогибов платформ (Балтийской, Московской, грабена Осло и др.) предшествовали однократные трапповые излияния байкальского тектонического этапа (венда). Внутриматериковые прогибы более глубокого заложения (6 – 10 км) характеризуются повторными (в палеозое и мезозое) проявлениями траппового магматизма (Днепровско-Донецкий прогиб, Североморская впадина, грабены Торнквиста, Рейнский и др.) Однако при этом циклы магматизма разделены интервалами в сотни миллионов лет (Семененко, 1975). Кайнозойский трапповый магматизм в океанах охватил уже 2/3 площади планеты и также предшествовал последующему погружению всего этого региона. Многократное возобновление его на одних и тех же площадях в течение необычайно краткого (40 – 50 млн. лет) интервала времени привело к быстрому и глубокому обрушению перисферы и образованию впадин Мирового океана. Таким образом, амплитуда и динамика проседания перисферы А(t) прямо пропорциональна напряженности траппового магматизма U(t) и числу его циклов N и обратно пропорциональна длительности среднего интервала времени t между ними:

.

Полученное выражение характеризует внешнее проявление динамики перисферы, что в конечном итоге отражает активность процессов в ядре и астеносфере. Оно показывает, что чем больше циклов и чем чаще они следуют друг за другом, тем быстрее и интенсивнее идет относительное проседание перисферы Земли в разуплотненное (освобождающееся от магмы и летучих) пространство астеносферы. Этот закон, видимо, универсален для Земли и может быть использован для объяснения тектоники ее «доокеанического» периода, т.е. большей части фанерозоя и докембрия.

Анализ формулы показывает, что при нулевом цикле (N = 0) и, следовательно, отсутствии траппового магматизма относительного погружения перисферы не происходит А(t) = 0. Трансгрессия, если таковая наступает в данном случае, должна быть объяснена эвстатическим подъемом уровня моря, что, естественно, имеет место между интервалами общей аккреции Земли. Иными словами, медленная трансгрессия сочетается с тектоническим покоем. Выносимые на поверхность массы эндогенной воды не компенсируются стабильной емкостью морских впадин. Седиментация усугубляет этот процесс, и избыток воды выплескивается на низменную сушу.

Таким образом, используя найденную закономерность, можно наметить для позднего протерозоя (венда) – фанерозоя динамический ряд структур, тектоника которых укладывается в определенную схему. Области, где в указанный период отсутствовал трапповый магматизм, оказались в дальнейшем динамически наиболее стабильными. К ним относятся все докембрийские щиты. Не случайно под ними не удается обнаружить астеносферы. Области однократного (моноцикличного) магматизма (в венде) явились регионами будущих синеклиз платформы. Двух-трехкратное (включая и вендское) полицикличное, с интервалами в 100 – 200 млн. лет, проявление магматизма характерно для внутриплатформенных прогибов более глубокого заложения (авлакогенов). Наконец, полицикличный магматизм с небольшими интервалами (5 – 10 млн. лет) привел к образованию современных океанических впадин. Итак, структурный ряд – щиты, синеклизы, прогибы, впадины океанов – отражает прежде всего различные ступени эволюции астеносферы под этими регионами. В свою очередь, формирование астеносферы всецело обусловлено объемом летучих и тепла, диффундируемых через оболочку под подошву перисферы из зоны внешнего ядра. Следовательно, гигантский размах кайнозойского траппового магматизма характеризует усиление активности процессов в ядре Земли, аккреции ее оболочки с образованием многочисленных диффузионных каналов под секторами будущих океанов.

Уменьшение объема Земли за счет уплотнения протовещества, диссипация водорода, других газов и продуктов диссипации воды вместе с сокращением радиуса и, естественно, площади поверхности неизбежно ведет к опусканию уровней перисферы. Этот процесс неравномерен как в пространстве, так и во времени. Неравномерные вдоль радиуса опускания ведут к образованию разновысотных поверхностей выравнивания сферы. Эти разноамплитудные опускания поверхности сферы, а не горизонтальное равномерное сжатие и складкообразование Эли де Бомона и Э. Зюсса обеспечивают сокращение площади поверхности Земли в ходе ее контракции. И в этом – главное отличие нашей «холодной» контракции от классической контракции Зюсса, помимо ее исходной посылки (Орлёнок, 1980).

Сокращение поверхности сжимающейся сферы достигается не всеобщим пликативным сжатием ее каменной оболочки, а опусканием на разные уровни отдельных ее блоков. Огибающая этих дискретных поверхностей будет равна по площади начальной поверхности Земли.

Таким образом, мы приходим к важному выводу, определяющему всю направленность рельефообразования на нашей планете.

Сокращение поверхности Земли вследствие уменьшения ее объема и прогрессирующего уменьшения радиуса ведет к увеличению контрастности и глубины расчлененности рельефа твердой перисферы. Следовательно, размах амплитуды дифференцированности рельефа планеты прямо пропорционален экзогенному фактору, характеризующему интенсивность разрушения рельефа, что в конечном итоге определяется наличием или отсутствием свободной воды на поверхности планеты. Математически этот вывод можно записать так (Орлёнок, 1980):

(км),

где А – средняя амплитуда расчлененности рельефа поверхности, км; Т – возраст планеты, млн. лет; Q – экзогенный фактор, определяемый в км/год; К – коэффициент пропорциональности, характеризующий относительную внутреннюю активность планеты.

Для планет Солнечной системы Т = 4,5109 лет, т.е. величина постоянная. Для современных Земли, Луны, Марса, Меркурия величина А имеет один порядок, следовательно, А = 4,5 км. Отсюда отношение коэффициентов К планет к соответствующему коэффициенту Земли будет характеризовать меру их внутренней активности в сравнении с Землей:

.

Таким образом, о внутренней активности планет относительно Земли можно судить по отношению их экзогенных факторов. Расчеты показывают (Орлёнок, 1980), что, например, активность процессов в недрах Луны в 500 тысяч раз меньше, чем в недрах Земли, т.е. практически близка к нулю: . Коль скоро имеет место сокращение радиуса Земли, предсказываемое контракцией, то можно попытаться найти эту величину. Если современный периметр планеты составляет D1, а позднедокембрийский – D2, то величина

и будет характеризовать сокращение радиуса Земли за время 580 млн. лет, т.е. в течение фанерозоя. Проведенные расчеты показали (Орлёнок, 1980), что средняя величина радиуса Земли 600 – 1000 млн. лет назад была на 261 км больше, чем современная, т.е. если современный радиус равен 6371 км, то в конце докембрия он был 6632 км, что соответствует уменьшению площади Земли примерно на 4 млн. км2. Полученное значение сокращения радиуса совпадает по порядку величин с теоретическим В. Кесарева (1976) – 195 км/млрд. лет. Имеющиеся расхождения могут быть отнесены за счет неточности определения возраста и глубины фундамента либо переработанного протовещества. Тем не менее достигнутое независимыми методами совпадение весьма убедительно и служит важным доказательством правильности теоретических предпосылок и расчетов, сделанных выше. Это, в свою очередь, не оставляет сомнений относительно общей направленности процесса эволюции перисферы Земли, в основе которого лежит разновременное и разноамплитудное опускание ее блоков.

Таким образом, опускание твердой перисферы, подготовленное иерархией процессов в ядре и астеносфере, является ведущим тектоническим процессом на поверхности Земли. Все остальные виды движений ее будут производными от этого главного процесса. Следовательно, на Земле, имеющей гравитационную организацию вещества, нет такого механизма, который бы порождал вздымание твердой перисферы. Предполагаемый некоторыми исследователями вслед за Ван Беммеленом механизм всплывания легкого материала с границы «жидкого» ядра через нижнюю мантию (слой D) с последующей остановкой под подошвой каменной оболочки весьма умозрителен. За длительную историю развития планеты подобные астенолиты неоднократно переплавили бы нижнюю мантию, что, несомненно, ускорило бы переработку первичного планетного вещества. В результате Земля давно бы достигла лунной стадии. Этого не произошло потому, что плотная оболочка, обладающая исключительно низкой теплопроводностью, пропускала лишь летучие продукты дегазации ядра, а не расплавленную массу силикатов и окислов. Поэтому и невозможна конвекция в нижней мантии, на что указали Г. Джеффрис (1960, 1975) и Л. Кнопов (1975).

В нашей схеме также следует предположить, что миграция летучих из зоны ядра происходила не непрерывно, а дискретно, по мере их скопления в верхах реакционной зоны. В противном случае непрерывный поток мог переплавить нижнюю мантию под секторами океанов. Однако сколько-нибудь существенных аномалий, по данным сейсмологии, здесь не наблюдается (Буллен, 1976).

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее