86148 (Применение численных методов для решения уравнений с частными производными)

2016-07-28СтудИзба

Описание файла

Документ из архива "Применение численных методов для решения уравнений с частными производными", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "лабораторные работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86148"

Текст из документа "86148"

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

Кафедра «Прикладная математика»

ОТЧЕТ

ПО ВЫПОЛНЕННОЙ КУРСОВОЙ РАБОТЕ

Предмет «Численные методы»

«Применение численных методов для решения Уравнений с частными производными»

Санкт-Петербург 2008г.

Лабораторная работа N1 "Интерполирование алгебраическими многочленами"

Для решения задачи локального интерполирования алгебраическими многочленами в системе MATLAB предназначены функции polyfit (POLYnomial FITting - аппроксимация многочленом) и polyval (POLYnomial VALue - значение многочлена).

Функция polyfit (X,Y,n) находит коэффициенты многочлена степени n , построенного по данным вектора Х, который аппроксимирует данные вектора Y в смысле наименьшего квадрата отклонения. Если число элементов векторов X и Y равно n+1, то функция polyfit (X,Y,n) решает задачу интерполирования многочленом степени n.

Функция polyval (P,z) вычисляет значения полинома, коэффициенты которого являются элементами вектора P, от аргумента z . Если z – вектор или матрица, то полином вычисляется во всех точках z.

Воспользуемся указанными функциями системы MATLAB для решения задачи локального интерполирования алгебраическими многочленами функции, заданной таблицей своих значений

X

0.0

1.0

2.0

3.0

4.0

Y

1.0

1.8

2.2

1.4

1.0

и вычисления ее приближенного значения в точке x* = 2.2 .

Задача 1 (задача локального интерполирования многочленами)

Построить интерполяционные многочлены 1-ой, 2-ой и 3-ей степени.

Вычислить их значения при x=x*.

Записать многочлены в канонической форме и построить их графики.

Решение задачи средствами системы MATLAB:

X=[0.0000 0.5000 1.0000 1.5000 2.0000 2.5000];

Y=[0.0378 0.0653 0.3789 1.0353 0.5172 0.9765];

xzv=1.61;

P1=polyfit(X(4:5),Y(4:5),1) Коэффициенты многочлена P1

P2=polyfit(X(3:5),Y(3:5),2) Коэффициенты многочлена P2

P3=polyfit(X(3:6),Y(3:6),3) Коэффициенты многочлена P3

Полученные таким образом коэффициенты интерполяционных многочленов и значения этих многочленов при x=x* :

P1 = -1.0362 2.5896

P2 = -2.3490 7.1853 -4.4574

P3 = 2.8692 -15.2604 25.8351 -13.0650

z1 = 0.9213

z2 = 1.0221

z3 = 0.9470

многочлены P1, P2, P3

P1 = -1.0362*X+2.5896

P2 = -2.3490*X2+7.1853*X+-4.4574

P3 = 2.8692*X3 -15.2604*X2 + 25.8351 + -13.0650

Для построения графиков интерполяционных многочленов следует создать векторы xi1, xi2, xi3, моделирующие интервалы (X(3):X(4)), (X(2):X(4)),(X(2):X(5)), соответственно, и вычислить значения многочленов P1, P2, P3 для элементов векторов xi1, xi2, xi3, соответственно:

xi1=X(4):0.05:X(5);

xi2=X(3):0.05:X(5);

xi3=X(3):0.05:X(6);

y1=polyval(P1,xi1);

y2=polyval(P2,xi2);

y3=polyval(P3,xi3);

plot(X,Y,'*k',xi1,y1,xi2,y2,xi3,y3);grid

Интерполирование нелинейной функцией Y=A*exp(-B*X)

y_l=log(Y)

Pu=polyfit(X(4:5),y_l(4:5),1)

z_l=(exp(Pu(2))*exp(Pu(1)*xzv))

Y= 8.3040*exp(-1.3880*X)

Функция plot с указанными аргументами строит табличные значения функции черными звездочками('*k'), а также графики многочленов P1 (по векторам xi1 и y1), P2 (по векторам xi2 и y2) и P3 (по векторам xi3 и y3), и функцией Y=A*exp(-B*X), соответственно синей, красной и зеленой кривыми.

plot(X,Y,'*k',xi1,y1,xi2,y2,xi3,y3,xi1,exp(Pu(2))*exp(Pu(1)*xi1));grid

Оценка погрешности интерполирования

При оценке погрешности решения задачи интерполирования в точке x* за погрешность epsk интерполяционного многочлена степени k принимается модуль разности значений этого многочлена и многочлена степени k+1 в точке x*.

С помощью уже полученных значений мы можем оценить погрешности интерполяционных многочленов P1 и P2 в точке x* , используя функцию abs системы MATLAB для вычисления модуля:

eps1 = abs(z1-z2)

eps1 = 0.1008

eps2 = abs(z2-z3)

eps2 = 0.0751

Для оценки погрешности многочлена P3 необходимо предварительно вычислить

значение z4=P4(x*), а затем - eps3.

P4=polyfit(X,Y,4);z4=polyval(P4,xzv);

eps3=abs(z4-z3)

eps3 = 0.1450

«Построение сплайна»

X=[0.0000 0.5000 1.0000 1.5000 2.0000 2.5000];

Y=[0.0378 0.0653 0.3789 1.0353 0.5172 0.9765];

cs = spline(X,[0 Y 0]);

xx = linspace(0,2.5);

plot(X,Y,'*m',xx,ppval(cs,xx),'-k');

h=0.5

esstestvennii spline

A=[4 2 0 0 0 0

1 4 1 0 0 0

0 1 4 1 0 0

0 0 1 4 1 0

0 0 0 1 4 1

0 0 0 0 2 4]

B=[6*(Y(2)-Y(1))/h 0 0 0 0 6*(Y(length(Y))-Y(length(Y)-1))/h]

for i = 2:(length(Y)-1)

B(i)=(3/h)*(Y(i+1)-Y(i-1))

end

S=inv(A)*B'

otsutstvie uzla

A1=[1 0 -1 0 0 0

1 4 1 0 0 0

0 1 4 1 0 0

0 0 1 4 1 0

0 0 0 1 4 1

0 0 0 1 0 -1]

B1=[2*(2*Y(2)-Y(1)-Y(3))/h 0 0 0 0 2*(2*Y(length(Y)-1)-Y(length(Y))-Y(length(Y)-2))/h]

for i = 2:(length(Y)-1)

B1(i)=(3/h)*(Y(i+1)-Y(i-1))

end

S1=inv(A1)*B1'

c1 = spline(X,[S(2) Y S(5)]);

x1 = linspace(0,2.5,101);

c2 = spline(X,[S1(2) Y S1(5)]);

x2 = linspace(0,2.5,101);

plot(X,Y,'ob',xx,ppval(cs,xx),'-',x1,ppval(c1,x1),'*',x2,ppval(c2,x2),'^',xx,spline(X,Y,xx));

h = 0.5000

A =

4 2 0 0 0 0

1 4 1 0 0 0

0 1 4 1 0 0

0 0 1 4 1 0

0 0 0 1 4 1

0 0 0 0 2 4

B = 0.3300 0 0 0 0 5.5116

B = 0.3300 2.0466 0 0 0 5.5116

B = 0.3300 2.0466 5.8200 0 0 5.5116

B = 0.3300 2.0466 5.8200 0.8298 0 5.5116

B = 0.3300 2.0466 5.8200 0.8298 -0.3528 5.5116

S =

0.0052

0.1546

1.4230

-0.0266

-0.4869

1.6213

A1 =

1 0 -1 0 0 0

1 4 1 0 0 0

0 1 4 1 0 0

0 0 1 4 1 0

0 0 0 1 4 1

0 0 0 1 0 -1

B1 = -1.1444 0 0 0 0 -3.9096

B1 = -1.1444 2.0466 0 0 0 -3.9096

B1 = -1.1444 2.0466 5.8200 0 0 -3.9096

B1 = -1.1444 2.0466 5.8200 0.8298 0 -3.9096

B1 = -1.1444 2.0466 5.8200 0.8298 -0.3528 -3.9096

S1 =

0.2496

0.1008

1.3940

0.1433

-1.1372

4.0529

Лабораторная работа N2 "Построение алгебраических многочленов наилучшего среднеквадратичного приближения"

X=[0.0000 0.5000 1.0000 1.5000 2.0000 2.5000];

Y=[0.0378 0.0653 0.3789 1.0353 0.5172 0.9765];

n=length(X)

TABL=[X,sum(X);Y,sum(Y);...

X.^2,sum(X.^2);...

X.*Y,sum(X.*Y);...

X.*X.*Y,sum(X.*X.*Y);...

X.^3,sum(X.^3);X.^4,sum(X.^4)];

TABL=TABL'

X Y X^2 X*Y X^2*Y X^3 X^4

0 0.0378 0 0 0 0 0

0.5000 0.0653 0.2500 0.0326 0.0163 0.1250 0.0625

1.0000 0.3789 1.0000 0.3789 0.3789 1.0000 1.0000

1.5000 1.0353 2.2500 1.5530 2.3294 3.3750 5.0625

2.0000 0.5172 4.0000 1.0344 2.0688 8.0000 16.0000

2.5000 0.9765 6.2500 2.4413 6.1031 15.6250 39.0625

7.5000 3.0110 13.7500 5.4402 10.8966 28.1250 61.1875 - Сумма

По данным таблицы запишем и решим нормальную систему МНК-метода:

1) дл многочлена первой степени

S1=[n, TABL(7,1);TABL(7,1) TABL(7,3)] матрица коэффициентов

T1=[TABL(7,2);TABL(7,4)] вектор правых частей

coef1=S1\T1 решение нормальной системы МНК

A1=coef1(2);B1=coef1(1); коэффициенты многочлена 1-ой степени

S1 =

6.0000 7.5000

7.5000 13.7500

T1 =

3.0110

5.4402

coef1 =

0.0229

0.3832

2) дл многочлена второй степени

S2=[n TABL(7,1) TABL(7,3);TABL(7,1) TABL(7,3) TABL(7,6);TABL(7,3) TABL(7,6) TABL(7,7)] матрица коэффициентов

T2=[TABL(7,2);TABL(7,4);TABL(7,5)] вектор правых частей

coef2=S2\T2 решение нормальной системы МНК

A2=coef2(3);B2=coef2(2);C2=coef2(1); коэффициенты многочлена 2-ой степени

S2 =

6.0000 7.5000 13.7500

7.5000 13.7500 28.1250

13.7500 28.1250 61.1875

T2 =

3.0110

5.4402

10.8966

coef2 =

-0.0466

0.5917

-0.0834

Для построения графиков функций y1=A1*x+B1 и y2=A2*x^2+B2*x+C2 с найденными коэффициентами зададим вспомогательный вектор абсциссы xi, а затем вычислим элементы векторов g1=A1*xi+B1 и g2=A2*xi^2+B2*xi+C2:

h=0.05;

xi=min(X):h:max(X);

g1=A1*xi+B1;

g2=A2*xi.^2+B2*xi+C2;

plot(X,Y,'*k',xi,g1,xi,g2);grid

coef1=polyfit(X,Y,1) коэффициенты многочлена первой степени

coef2=polyfit(X,Y,2) коэффициенты многочлена второй степени

coef1 = 0.3832 0.0229

coef2 = -0.0834 0.5917 -0.0466

Для построения графиков зададим вспомогательный вектор абсциссы xi, а затем c помощью функции polyval вычислим элементы векторов g1 и g2:

xi=min(X):0.1:max(X);

g1=polyval(coef1,xi);

g2=polyval(coef2,xi);

plot(X,Y,'*k',xi,g1,xi,g2);grid

Очевидно, что построенные таким способом графики совпадут с полученными ранее.

Для того, чтобы определить величину среднеквадратичного уклонения, вычислим суммы квадратов уклонений g1(x) и g2(x) от таблично заданной функции в узлах таблицы X а затем

G1=polyval(coef1,X);

G2=polyval(coef2,X);

delt1=sum((Y-G1).^2); delt1=sqrt(delt1/5)

delt2=sum((Y-G2).^2); delt2=sqrt(delt2/5)

Последние две строки можно заменить другими, если использовать функцию mean , вычислющую среднее значение:

delt1=mean(sum((Y-G1).^2))

delt2=mean(sum((Y-G2).^2))

delt1 = 0.2403

delt2 = 0.2335

delt1 = 0.2888

delt2 = 0.2725

Для нелинейной

X=[0.0000 0.5000 1.0000 1.5000 2.0000 2.5000];

Y=[0.0378 0.0653 0.3789 1.0353 0.5172 0.9765]

Y_o=Y

Y=1./(exp(Y))

n=length(X)

TABL=[X,sum(X);Y,sum(Y);... означает перенос строки

X.^2,sum(X.^2);...

X.*Y,sum(X.*Y);...

X.*X.*Y,sum(X.*X.*Y);...

X.^3,sum(X.^3);X.^4,sum(X.^4)];

TABL=TABL'

По данным таблицы запишем и решим нормальную систему МНК-метода:

2) дл многочлена второй степени

S2=[n TABL(7,1) TABL(7,3);TABL(7,1) TABL(7,3) TABL(7,6);TABL(7,3) TABL(7,6) TABL(7,7)] матрица коэффициентов

T2=[TABL(7,2);TABL(7,4);TABL(7,5)] вектор правых частей coef2=S2\T2 решение нормальной системы МНК

A2=coef2(3);B2=coef2(2);C2=coef2(1); коэффициенты многочлена 2-ой степени

Дл построения графиков функции y2=A2*x^2+B2*x+C2 с найденными коэффициентами зададим вспомогательный вектор абсциссы xi, а затем вычислим элементы векторов g1=A1*xi+B1 и g2=A2*xi^2+B2*xi+C2 :

h=0.05;

xi=min(X):h:max(X);

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее