166556 (Триметилхлорсилан – перспективний конденсуючий реагент в реакціях за участю карбонільних сполук), страница 2

2016-08-02СтудИзба

Описание файла

Документ из архива "Триметилхлорсилан – перспективний конденсуючий реагент в реакціях за участю карбонільних сполук", который расположен в категории "". Всё это находится в предмете "химия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "химия" в общих файлах.

Онлайн просмотр документа "166556"

Текст 2 страницы из документа "166556"

– висока хемоселективність та ступінь конверсії процесу;

– зручна процедура відділення надлишків реагенту та продуктів його розкладу від цільових сполук.

В якості реагенту, що задовольняв багатьом з наведених вище критеріїв та виглядав досить перспективним для використання в реакціях конденсації альдегідів і кетонів по карбонільній групі в паралельному синтезі, нами був обраний триметилсилілхлорид (ТМСХ, TMSCl).

Триметилхлорсилан – конденсуючий реагент в реакції кневенагеля.

Конденсація Кневенагеля на сьогоднішній день є загальновідомою та широковживаною в органічному синтезі реакцією формування С-С зв’язку завдяки достатньо широкому колу речовин, що можуть бути використані як субстрати у ній, та різноманітному спектру застосування сполук, що є її продуктами.

На першому етапі досліджень нами була розроблена препаративна методика для проведення цієї реакції. Для цього було оптимізовано розчинник, молярне співвідношення реагентів, час та температуру проведення реакції, що дозволило довести виходи цільових бензиліденових сполук до кількісних. Оптимальними умовами для проведення конденсації Кневенагеля з використанням TMSCl, як конденсуючого та водовіднімаючого агенту на тестовій суміші бензальдегіду 1(1) та малодинітрилу 2(1) (або етилового естеру ціаноцтової кислоти 2(2)) виявилося: нагрівання відповідного альдегіду з метилен активною компонентою у співвідношенні 1:1 при 100 єС в розчині DMF протягом 1-ї години в pressure tube, або при кімнатній температурі протягом 4 годин. Наступним кроком було встановлення меж застосування реакції по метилен активним компонентам та вивчення впливу останніх на умови проведення реакції. Для цього нами були обрані 3 модельні альдегіди: PhCHO (1(1)), p-MeO-C6H4CHO (1(2)), p-Cl-C6H4CHO (1(3)).

При переході від малонодинітрилу 2(1) та етилового естеру ціаноцтової кислоти 2(2) до амідів ціаноцтової кислоти 2(3-10) має місце чітка залежність реакційної здатності від кількості замісників при атомі азоту амідної групи. Так, у разі N- не заміщеного 2(3) та моно N-заміщених 2(4-9) амідів, утворення відповідних продуктів 3{1(1-3)-2(3-9)} відбувається майже з кількісними виходами. Використання N,N-дизаміщених амідів ціаноцтової кислоти 2(10) веде до значного зменшення ступеню конверсії вихідних компонентів в цільовий продукт, а заміна однієї нітрильної групи в малонодинітрилі на карбонільну 2(11-13) або сульфонову 2(14,15) практично не впливає на виходи та не потребує змін в процедурі. (Схема 1)

Наступним кроком дослідження було розширення нашої процедури на отримання бензиліденових похідних гетарилацетонітрилів 4(1-12) та фенілацетонітрилів 4(13,14). (Схема 2)

Поведінка гетарилацетонітрилів виявилася цілком аналогічною до попередніх сполук, а ось фенілацетонітрил 4(13) не реагував з альдегідами ні при кімнатній температурі, ні при багаточасовому нагріванні при 100С. Збільшивши СН-кислотність фенілацетонітрилу за рахунок введення NO2-групи в бензенове кільце (4(14)), нам вдалося провести конденсацію з альдегідами, однак навіть у цьому випадку конверсія вихідних реагентів не перевищувала 75%.

Продовжуючи пошук границь застосування нашої синтетичної процедури ми дослідили аміди ацетооцтової 6(1,2) та диаміди малонової 8(1-3) кислот. (Схема 3)

Поведінка 6(1,2) подібна до амідів ціаноцтової кислоти 2, однак вони виявилися нестійкими до нагрівання за наших умов, що дозволяло проводити конденсацію лише при кімнатній температурі. При цьому залежність ступеня конверсії від кількості замісників біля атому азоту для 6 повністю збігалася з аналогічною для 2. Перехід до диамідів малонової кислоти 8(1-3) найбільш ярко проілюстрував цю залежність. Так, у випадку сполук 8(1,2), продукти 9{1(1-3)-8(1,2)} були синтезовані нами з високими виходами, а у випадку диаміду піролідину 8(3) 24 годинне нагрівання реакційної суміші за аналогічних умов не приводить до утворення навіть слідових кількостей бензиліденового похідного.

Використання в даній реакції ацилпіруватів 10(1-3) веде до внутрішньо молекулярної циклізації з утворенням продуктів 11. (Схема 4)

Ще одними “класичними” об’єктами в конденсації Кневенагеля є (тіо)барбітурові кислоти 12(1-3) та інші циклічні дикетони 12(4-6) та їх гетероциклічні аналоги 12(7-16). Відомо, що основною проблемою при синтезі бензиліденових похідних такого роду субстратів є можливість конденсації 2-х молекул останніх з однією молекулою альдегіду. Використання системи Me3SiCl/DMF при температурі не вище 25єС дозволило нам селективно отримати бензиліденові похідні 13 для усіх типів субстратів за виключенням циклічних 1,3-дикетонів 12(4,5) та піразолону 12(12), для яких нам так і не вдалося підібрати умови переважного утворення одного з продуктів. (Схема 5)

Циклічні кетони, що містять дві рівноцінні СН-кислотні групи типу 15(1-4) утворюють біс-продукти 16.

При переході від метилен активних сполук, що містять СН-кислотну метиленову групу, до сполук з СН-кислотною метильною групою, типу ацетофенону 17(1) або його гетероциклічних аналогів 17(2,3), а також тетралону 17(4) та його аналогів 17(5,6) необхідно нагрівання протягом 6-10 годин в залежності від природи реагентів. (Схема 6)

Ще більш цікавими, з точки зору створення комбінаторних бібліотек, є метилгетероцикли з СН-кислотною метильною групою, оскільки стирени, що утворюються з них внаслідок реакції, знаходять найбільш широке застосування серед бензиліденових похідних. Слід зауважити, що на сьогоднішній день не існує загальної зручної процедури для синтезу цього класу сполук, що значно скорочує коло субстратів придатних до цього перетворення.

Використовуючи розроблену нами методику, були синтезовані стирени на основі сполук 19(1-19) за допомогою нагрівання реакційної суміші протягом 6-12 годин. Отримання стиренів зі сполук 19(20-32) потребує нагрівання на водяній бані протягом 20-25 годин, однак, внаслідок такого тривалого нагрівання, нам вдалося досягти майже кількісного утворення цільових продуктів. Слід зауважити, що отримання стиренів подібного типу за іншими методиками відбувається з низькими виходами та потребує достатньо жорстких умов, а стирени на основі сполук 19(28-32) взагалі отримані нами вперше. (Схема 7)

З метою краще проілюструвати переваги нашого методу, а також дослідити та висвітлити межі його застосування по карбонільній компоненті нижче наведено невеликий сет з 48 похідних на основі сполуки 19(20) та різноманітних альдегідів 1(1-48). (Схема 8)

Слід зауважити, що реакція утворення бензиліденових похідних за нашим методом відбувається стереоселективно з утворенням виключно транс-ізомеру по відношенню до ймовірного місця силілювання метилен активної сполуки.

Утворення сполук з такою конфігурацією, літературні дані та отримані нами результати наштовхнули на думку про наступну схему перебігу процесу. (Схема 9).

Розширюючи межі застосування нашого підходу в бік використання “нетрадиційних” субстратів в якості метилен активних сполук ми спробували ввести в реакцію Кневенагеля 2-оксиметилбензтіазол 21(1). Виявилося, що ця сполука досить легко реагувала з альдегідами 1 з отриманням відповідних бензтіазолілбензилкетонів 22 з майже кількісними виходами. (Схема 10)

Отримавши такі оптимістичні результати ми вирішили спробувати в цій реакції інші 2-оксиметилгетероцикли 21(2-9). (Схема 11)

При переході до найближчих аналогів 21(2,3) очікувані гетарилбензилкетони 22 утворювалися у кількостях 21% та 44% відповідно, а основними продуктами виявилися гетарилхлорвінільні похідні 23. Аналогічна ситуація була і зі сполуками 21(5,7-9), причому, в разі 21(5), 2-хінолілбензилкетон 22{1(1)-21(5)} виявився основним продуктом реакції (81%), що дозволило отримати цю сполуку в чистому вигляді. В разі використання 21(6) в реакційній суміші окрім продуктів типу 22 та 23 ми фіксували утворення сполуки 24, що є продуктом конденсації 22 з іще однією молекулою альдегіду.

Ці результати дозволили нам ввести в конденсацію Кневенагеля цілий ряд відповідних хлорметильних похідних гетероциклів, взаємодія яких з альдегідами приводила до утворення виключно сполук типу 24. Також була розроблена методика синтезу хлорвінільних похідних 24 виходячи з тозилатів відповідних 2-оксиметиленпохідних 27, вивчена можливість використання TMSBr та TMSI в цій реакції, а також використання F замість OTos в якості нуклеофугу. (Схема 12)

Слід зауважити, що дана реакція також відбувається стереоселективно з утворенням транс-продуктів.

Використання триметилхлорсилану в реакціях т-аміноефекту.

При вивченні меж застосування реакції Кневенагеля по альдегідам нами було помічено, що використання орто-диалкіламіноальдегідів 29 з найбільш активними СН-кислотними субстратами 2, 4, веде до утворення суміші бензиліденового продукту типу 30 та продукту циклізації шляхом Т-аміноефекту типу 31. Оптимальні умови для отримання виключно поліциклічних продуктів типу 31 були нами винайдені: нагрівання реакційної суміші в pressure tube в DMF в присутності 3-х еквівалентів Me3SiCl при 100 оС протягом 10 годин. (Схема 13)

Маючи зручну методику проведення Т-реакції за допомогою ТМСХ, ми вирішили визначити межі застосування нашого методу. Для цієї мети в якості вихідних альдегідів ми вирішили використати орто-N-диалкіламінозаміщені бензальдегіди 29(1-4), 4-піразолкарбальдегіди 29(5,6) та 3-хінолінкарбальдегіди 29(7,8). (Малюнок 3)

З іншого боку в якості метилен активних компонент нами були досліджені різноманітні заміщені ацетонітрили 2,4 (Малюнок 4) та циклічні СН-кислотні сполуки 12. (Малюнок 5).

Внаслідок реакції сполуки 2(15-17), 4(1-4,6,7,9,11,15,16),12(1-6,17,18,21-23) утворюють поліциклічні продукти 31 з 75-95% виходами, причому утворення бензиліденових похідних в даному випадку не відбувається. Отримана синтетична процедура дозволила розширити межі Т-ефекту порівняно з відомими раніше методами його активації. Так нам вперше вдалося провести Т-гетероциклізацію з речовинами 4(3,11,16), також вперше вдалося використати в ній N-незаміщений ціанметилбензімідазол 4(2). Зручність та можливість проведення як one-pot Т-реакції в присутності ТМСХ дозволила використати її з монозаміщеними тіобарбітуровими кислотами 12(18), гомофталімідами 12(21,22) та піразолонами 12(23), отримання відповідних бензиліденових похідних яких дуже ускладнене.

Слід зауважити, що реакція відбувається стереоселективно з утворенням сполук з аналогічною конфігурацією до описаних раніше.

Дуже цікавою виглядала спроба використання TMSCl для Т-реакції орто-N-диалкіламіноанілів з альдегідами. (Схема 15)

Оптимальною методикою для проведення реакції в даному випадку виявилося: 2-ох годинне нагрівання суміші орто-N-диалкіламіноаніліну 38 з альдегідом 1 в Py в присутності 3-х еквівалентів Me3SiCl. На нашу думку основною перевагою Py порівняно з іншими розчинниками є найбільш повне та швидке зв’язування HCl, що утворюється при конденсуючій дії ТМСХ. Також слід зауважити, що при використанні в якості диалкіламіногрупи 6-ти членних циклічних амінів (піпіридин 38(7), морфолін 38(8)) Т-ефекту не відбувається та утворюються звичайні азометини 40.

Триметилхлорсилан – конденсуючий реагент в реакціях гетероциклізації карбонільних сполук з амінами, що містять в орто-положенні аміно-, тіо- або гідроксигрупу.

Нами була розроблена препаративна методика синтезу бензімідазолів виходячи з альдегідів 1 (Малюнок 6) та орто-фенілендиамінів 43 (Малюнок 7) придатна для паралельного синтезу комбінаторних бібліотек.

Оптимальні реакційні умови – нагрівання вихідних речовин у співвідношенні 1:1 в розчині DMF протягом 2-х годин на водяній бані в присутності 2-х еквівалентів ТМСХ – ведуть до утворення цільових бензімідазолів 46 з високими препаративними виходами. (Схема 16)

Визначивши умови та розробивши зручну та просту процедуру для синтезу бензімідазолів, було вирішено ввести замість орто-фенілендиамів 43 орто-тіо- (48) та орто-гідроксианіліни (49). (Схема 17)

Виявилося, що орто-тіоаніліни 48 ведуть себе в нашій системі повністю аналогічно до орто-фенілендиамінів 43. Навпаки, орто-гідрокси-аніліни 49 взагалі не утворюють бензоксазолів 51, реакція зупиняється на стадії утворення азометинів 52 і не йде далі ні при більш тривалому нагріванні, ні при спробі її проведення за більш жорстких умов.

Розроблений вище підхід був нами використаний для синтезу інших сполук, що містили у своєму складі імідазольний фрагмент. (Схема 18)

За нашим методом вперше було синтезовано бібліотеку N-заміщених ксантинів 60 виходячи з альдегідів 1 і моно N-заміщених диаміноурацилів 59.

ВИСНОВКИ

Розроблена нова методологія використання Me3SiCl, як конденсуючого агенту для активації карбонільних сполук, придатна до використання в паралельному синтезі для отримання комбінаторних бібліотек.

Винайдені технологічні можливості використання TMSCl при підвищеній температурі (до 100 єС), завдяки чому вдалося значно розширити коло субстратів, що можуть активуватися цим реагентом.

Розроблена методика для проведення реакції Кневенагеля в системі DMF/TMSCl з достатньо широкими межами застосування як по альдегідам, так і по метилен активним сполукам придатна до використання в паралельному синтезі.

Розроблена нова методика отримання гетарилбензилкетонів, що є дуже важкодуступними речовинами за іншими шляхами. При її використанні синтезована ціла низка раніше невідомих представників цього класу сполук.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее