165871 (Кинетические закономерности электрохимического окрашивания анодных оксидных пленок на алюминии и его сплавах)

2016-08-02СтудИзба

Описание файла

Документ из архива "Кинетические закономерности электрохимического окрашивания анодных оксидных пленок на алюминии и его сплавах", который расположен в категории "". Всё это находится в предмете "химия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "химия" в общих файлах.

Онлайн просмотр документа "165871"

Текст из документа "165871"

На правах рукописи

ХАЛИПИНА

Наталия Николаевна

КИНЕТИЧЕСКИЕ ЗАКОНОМЕРНОСТИ

ЭЛЕКТРОХИМИЧЕСКОГО ОКРАШИВАНИЯ АНОДНЫХ

ОКСИДНЫХ ПЛЕНОК НА АЛЮМИНИИ И ЕГО СПЛАВАХ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

2006


Общая характеристика работы

Актуальность темы.

Алюминий и его сплавы широко используются в самолето- и приборостроении, в электротехнике, бытовой технике. Для придания изделиям из алюминия высокой коррозионной стойкости, износостойкости, твердости, электроизоляционных свойств, декоративного вида их подвергают анодному оксидированию. В последнее время интенсивное развитие получило декоративное анодирование, обеспечивающее высокую светостойкость во всей цветовой гамме. Весьма перспективно в этом плане оксидирование с последующим электрохимическим окрашиванием в растворах минеральных солей. Систематические исследования этих процессов очень не многочисленны, воззрения на механизм этих процессов разноречивы. Это затрудняет эффективное решение технологических задач. Таким образом, тема работы актуальна.

Работа выполнялась в соответствии с планом важнейших НИР СГТУ по основному научному направлению "Разработка теоретических основ электрохимических технологий и материалов для химических источников тока" (№ государственной регистрации 01200205598).

Цель работы.

Изучение кинетики и механизма электрохимического окрашивания анодных оксидных пленок на алюминии и его сплавах по методу катодного внедрения.

Задачи исследования:

•исследовать влияние состава электролита оксидирования на кинетику электрохимического окрашивания алюминия и его сплавов в потенциостатическом режиме и предложить оптимальный состав электролита оксидирования, обеспечивающий наиболее качественное окрашивание анодных оксидных пленок (АОП) на алюминии и его сплавах;

•изучить влияние состава электролита оксидирования на объемный заряд окрашенных оксидных пленок;

•изучить влияние потенциала внедрения красящих катионов на объемный заряд окрашенных оксидных пленок;

•исследовать влияние природы красящего катиона и потенциала окрашивания оксидированных алюминиевых электродов на pHs приэлектродного слоя;

•измерить температуру приэлектродного слоя на оксидированных алюминиевых электродах в растворах электролитического окрашивания;

•исследовать возможность использования в качестве добавок в электролиты окрашивания твердых отходов гальванических производств;

• разработать технологические рекомендации по составу

электролита окрашивания и режиму электролиза.

Научная новизна работы.

Проведено систематическое изучение анодного окисления алюминия и его сплава АМ в водных растворах серной, фосфорной, щавелевой кислот и их смесей в широком диапазоне концентраций компонентов и при варьировании их составов. Показано влияние природы аниона на свойства и структуру АОП. Разработаны представления о механизме анодного окисления алюминия и его сплавов в концентрированных растворах кислот. Установлено, что при анодном растворении алюминия в сульфатно-фосфатных и сульфатно-оксалатных электролитах формируются поверхностные слои, обеспечивающие высокую подвижность катионов Ni (II), Cu (II) и Mg (II) в их структуре и обладающие высоким объемным зарядом. Установлены кинетические закономерности электрохимического окрашивания АОП на алюминии в широком интервале потенциалов при использовании красящих катионов различной химической природы. Показана взаимосвязь между pH приэлектродного слоя, изменением температуры AT в двойном слое и кинетикой процесса окрашивания. Установлена взаимосвязь между защитными и декоративными свойствами, светостойкостью окраски и природой и концентрацией катионных дефектов и их распределением в структуре АОП. Рассчитаны диффузионные характеристики, концентрация катионных дефектов, удельный объемный заряд окрашенных АОП. Предложена модель процесса. Разработана и научно обоснована методология направленного воздействия на свойства системы металл/оксидная пленка/электролит окрашивания, в основе которой лежит модифицирование оксидного слоя по методу катодного внедрения катионов из раствора, химическая природа которых и условия применения определяются технологической задачей.

Практическая значимость результатов работы.

Разработаны составы электролитов на основе серной, фосфорной и щавелевой кислот и режимы электролиза для нанесения анодных оксидных пленок на алюминий и его сплавы и для их электрохимического окрашивания, обеспечивающие высокие защитные свойства и светостойкость. Разработаны технологические рекомендации по использованию гальваношламов в составе электролитов окрашивания. Электролиты прошли успешные испытания и внедрены в учебный процесс. Результаты работы могут быть использованы при разработке методов и технологий получения окрашенных анодных оксидных пленок с заданными функциональными свойствами на алюминии и его сплавах в радиоэлектронике вычислительной технике, электротехнике, в бытовой технике.

Обоснование достоверности полученных результатов.

В работе использован комплекс современных, независимых, взаимодополняющих электрохимических и физико-химических методов исследования:

хроновольтамперометрия, основной потенциостатический метод,

тонкослойная хронопотенциометрия, термография приэлектродного слоя, импедансметрия, рЦ-метрия приэлектродного слоя; масс-спектрометрия вторичных ионов (ВИМС), микроскопия поверхности, а также методы определения светостойкости, напряжения пробоя, коррозионной стойкости в соответствии с ГОСТ; при оценке воспроизводимости экспериментальных результатов использовалась методика среднестатистической оценки доверительного интервала по 3-6 параллельным измерениям, который характеризовался критерием Кохрена.

Апробация результатов работы.

Основные результаты работы апробированы на Международных и Всероссийских конференциях: "Современные электрохимические технологии СЭХТ-2002" (2002 г., Саратов); "Защитные покрытия в машиностроении и приборостроении" (2003 г., Пенза); "Теория и практика электрохимических технологий. Современное состояние и перспективы развития" (2003 г., Екатеринбург); "Химия твердого тела и функциональные материалы" (2004 г., Екатеринбург); "Электрохимия, гальванотехника и обработка поверхности" (2001 г., Москва); "Перспективные полимерные композиционные материалы. Альтернативные технологии. Переработка. Применение. Экология" (2001 г., Саратов).

Публикации.

По теме диссертации опубликовано 6 работ, из них 2 статьи в центральной печати, 2 в реферируемых сборниках научных трудов и 2 тезисов докладов.

Структура и объем работы. Диссертация состоит из введения, 3 глав, выводов, списка использованной литературы из 184 наименований и приложения. Изложена на 163 страницах машинописного текста и содержит 74 рисунка и 35 таблиц.

На защиту выносятся следующие основные положения:

1) кинетические закономерности электролитического окрашивания АОП;

2) влияние потенциала и состава электролита оксидирования на концентрацию дефектов и объемный заряд в структуре окрашенных оксидных пленок;

3) взаимосвязь между природой красящего катиона, потенциалом окрашивания и pHs приэлектродного слоя;

4) взаимосвязь между температурой приэлектродного слоя и кинетикой электролитического окрашивания на

оксидированных алюминиевых электродах;

5) технологические рекомендации по использованию гальваношламов в составе электролитов окрашивания.

Основное содержание работы

Во введении дано обоснование актуальности темы, рассмотрены цели и задачи исследования, научная новизна и практическая значимость результатов работы.

Глава 1. Литературный обзор.

В первой главе дан анализ современных тенденций в научной литературе, посвященной анодному окислению алюминия и его сплавов, механизму и кинетике формирования анодных оксидных пленок (АОП), а также составу и строению анодных оксидных пленок на алюминии и его сплавах; составу электролитов анодного оксидирования и электролитического окрашивания; рассмотрены современные представления о механизме окрашивания, о роли дефектов структуры в механизме распределения носителей окраски и формирования цветовой гаммы; о влиянии сопутствующего процесса выделения водорода; проанализирована возможность использования твердых отходов гальванических производств в качестве добавок в электролиты окрашивания.

Глава 2. Методика эксперимента.

Во второй главе приведены методы и методики исследования, использованные в работе. Все исследования проведены на алюминии и его сплаве АМ. Электроды готовили в виде пластин толщиной 1 мм и рабочей поверхностью 50x10 мм или в виде стержней диаметром 2 мм и высотой 30 мм; при определении температуры приэлектродного слоя использовали дисковые электроды диаметром 10 мм.

Анодное оксидирование проводили в растворах H2SO4, Н3Р04 и их смесей, а также в растворах смесей Н3Р04 с Н2С4О4 в условиях варьирования концентраций и соотношения компонентов. Предварительная подготовка поверхности включала жесткое и мягкое травление в щелочном электролите; промывку в теплой и холодной воде; осветление в HN03; химическое полирование в смеси HN03 и Н3Р04 согласно ГОСТ; промывку в холодной воде и сушку. Вспомогательным электродом при оксидировании служил свинец; при окрашивании - медь или никель; при импедансных измерениях цилиндр из платинированной платины диаметром 10 мм и высотой 30 мм. В качестве электрода сравнения при измерениях потенциала использовали стандартный хлорсеребряный электрод.

В качестве электролитов окрашивания использовали растворы сульфатов NiS04 + MgS04 или CuS04+MgS04, подкисленные борной или серной кислотой. Растворы, приготовленные на основе гальваношламов,

содержали катионы Fe (III), Fe (II), Zn (II), Cu (II), N (II), Cr (II), или Cr (VI), Ca (II). Перед приготовлением электролитов окрашивания навеску шлама растворяли в горячей H2S04 и вводили дополнительно CuS04 или NiS04 и MgS04; кроме того, использовали растворы на основе гальваношламов, предварительно растворенных в H2S04, с добавкой толуолсульфоновой или сульфаминовой кислоты. Приготовленные растворы тщательно очищали от механических примесей.

Ток и напряжение на ванне оксидирования регулировали с помощью трансформатора с выходным напряжением 220 В.

Исследование кинетики и механизма анодного оксидирования и электрохимического (катодного) окрашивания проводили в потенциостатическом режиме на потенциостате П-5848 с платиновым противоэлектродом. Для регистрации тока и потенциала на электроде использовали самопишущий потенциометр КСП-4 при скорости протяжки диаграммной ленты 54000 мм/ч.

Импедансные измерения проводили на мосту переменного тока Р-5021 в комплекте с генератором сигналов ГЗ-33 и ламповым вольтметром В-13. Состояние анодной оксидной пленки до и после окрашивания исследовали по методике поперечных шлифов с помощью микроскопа "EPIGNOST" фирмы "Цейс" при увеличении 500 крат. Анализ образцов методом ВИМС проводили на магнитном масс-спектрометре МИ-13 05 с универсальной приставкой. Для измерения pH s использовали микросурьмяный электрод, устойчивый в кислых растворах в широком диапазоне pHs. Предварительно были получены калибровочные кривые Е-pHs. Определение температуры приэлектродного слоя осуществляли с помощью изготовленной на кафедре ТЭП ТИ СГТУ установки, основанной на использовании высокочувствительных к изменению температуры терморезисторов М15 (>1 кОм/град). Изменение температуры ДТ, вызванное протеканием электрохимической реакции, фиксировали с помощью цифрового вольтметра Щ1413 (класс точности 0,05/0,02 в диапазоне О-10В и 0,06/0,02 в остальных диапазонах измерений) в соответствии с калибровочной кривой. Светостойкость и защитные свойства покрытий определяли в соответствии с ГОСТ.

Глава 3. Результаты эксперимента.

В третьей главе представлены результаты эксперимента и их обсуждение.

3.1 Кинетические закономерности катодного внедрения и анодного растворения катионов окрашивания на анодно-оксидированном алюминиевом электроде.

При изучении кинетики катодного внедрения катионов окрашивания и их анодного растворения из окрашенных анодно-оксидных пленок на сплаве алюминия предварительное оксидирование проводили в 20% растворе серной кислоты, 18% - м растворе фосфорной кислоты, смеси серной и фосфорной кислот в различных соотношениях, смесях фосфорной и щавелевой кислот в течение 30 мин при плотности анодного тока 1 А. Толщина полученных АОП составляла 10±0,1 мкм. Сформированные АОП подвергали катодной обработке в растворе окрашивания в черный цвет, содержащем в своем составе CuS04, MgS04 и H2SO4 в потенциостатическом режиме (рис.1).

Диапазон рабочих потенциалов выбирали таким образом, чтобы он лежал вблизи равновесных значений потенциалов N восстановления соответствующих катионов окрашивания. После катодной обработки в условиях E=const электроды поляризовали различными плотностями анодного тока, составлявшими V% катодного тока, фиксируемого потенциостатической кривой при достижении стационарного состояния.

Кривые i процесса окрашивания оксидированных в H2S04 и Н3Р04 алюминиевых электродов при потенциалах, соответствующих разряду ионов Mg2+ и Си2+, перестроенные в координатах i-x (рис.2), не идут в начало координат. Это свидетельствует о том, что при катодной поляризации в потенциостатическом режиме наряду с процессом внедрения разряжающихся катионов из электролита окрашивания в металлическую основу часть красящих катионов внедряется в анодный оксид, что согласуется с результатами рентгенофазового анализа (рис.3).

Наблюдаемый при окислительно-восстановительных потенциалах системы Си + С быстрый подъем тока во времени связан с насыщением оксидного слоя электрода продуктами восстановления катионов меди. При смещении в область потенциалов системы Mg2+/Mg плотность тока на электроде возрастает: наряду с внедрением катионов Си + становится возможным внедрение Mg2+ и водорода в электрод. Таким образом, в оксидном слое на алюминии возможно протекание нескольких процессов, которые значительно искажают его структуру и свойства:

В зависимости от плотности тока ia переходное время т процесса может достигать 20-150 с. Затем наблюдается новое резкое смещение потенциала в область более положительных значений. Накапливающийся на электроде заряд создает на межфазной границе условия для последующего наращивания слоя АОП.

В соответствии с теорией метода тонкопленочной хронопотенциометрии количество электричества (qT), прошедшего через электрод при плотности тока i за время т: qt= ZFC0-i A73D, где X =10 мкм, толщина АОП; Со - объемная концентрация красящего катиона в слое АОП (моль / см3), связанная с объемным удельным зарядом qo соотношением: С0= qo / ZF-Зависимость qT-ip (рис.5) имеет вид прямых, по угловому коэффициенту наклона которых AqT/Aip рассчитывался коэффициент диффузии красящих катионов D=X / 3 (AqT/Aip),cM2/c.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее