1161-1 (Логика неопределенности и неопределенности во времени), страница 3

2016-08-01СтудИзба

Описание файла

Документ из архива "Логика неопределенности и неопределенности во времени", который расположен в категории "". Всё это находится в предмете "философия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "философия" в общих файлах.

Онлайн просмотр документа "1161-1"

Текст 3 страницы из документа "1161-1"

Обсуждаемое сходство можно подкрепить психологически, сделав похожими начертания сходных предикатов. Удобнее вместо Q использовать, допустим, Р*. Важно подчеркнуть, что суть идеи сходства не в этом. Мы называем n - местные атомарные предикаты Р(х 1 , ..., x n ) и Q (х 1 , ..., x n ) сходными в теории Т, если любая аксиома Т, содержащая эти предикаты или один из них, остается аксиомой данной теории Т после одновременной замены каждого вхождения Р(х 1 , ..., x n ) на Q (х 1 , ..., x n ) и каждого вхождения Q (х 1 , ..., x n ) на Р(х 1 , ..., x n ). Аналогичным образом определяется сходство в теории Т функциональных символов.

Перейдем к более детальным построениям. Пусть Т – аксиоматическая теория в языке L классического исчисления предикатов первого порядка. Сопоставим каждому n -местному атомарному предикатному символу Р(х 1 , ..., x n ) языка L n -местный атомарный предикатный символ Р*(х 1 , ..., x n ), а каждому n -местному функциональному символу t (х 1 , ..., x n ) – n-местный функциональный символ t *(х 1 , ..., x n ). Индивидные константы (если они вообще имеются) оставим без изменений [1] . Получим язык L*. Теперь заменим в аксиомах теории Т каждое вхождение предикатных и функциональных символов на соответствующие символы со звездочкой. Результат описанной замены для аксиомы А обозначим через А*. В итоге получим теорию Т* в языке L*, содержащую в качестве аксиом только формулы вида А*.

Объединим полученные теории в одну. Получим теорию Т E Т* в языке L E L *. Теория Т E Т* вряд ли может кого-то заинтересовать. Просто она содержит два параллельных ряда аксиом, отличающихся лишь наличием или отсутствием звездочек в их формулировках. Однако понятие формулы претерпело существенное изменение. Формулами теории Т E Т* отныне являются не только формулы языка L и формулы языка L * по отдельности, но и смешанные формулы, содержащие как символы без звездочек, так и символы со звездочками. Пусть А – какая-либо формула языка L E L *. Через А* обозначим результат одновременной замены в А каждого предикатного или функционального символа без звездочки на соответствующий символ со звездочкой, а каждого предикатного или функционального символа со звездочкой на соответствующий символ без звездочки .

Так определенная операция * на формулах обладает следующим очевидным свойством.

Предложение 1 . Любая формула А графически совпадает с А**, но ни одна формула А не совпадает с А*.

По аналогии с атомарными формулами, произвольные формулы А и А* также будем называть сходными в теории Т E Т*.

Положим L н = L E L * E {н}, где “н” – символ новой унарной логической связки.

Добавим к Т E Т* важное определение. Точнее, схему определений. Для любой формулы А языка L н аксиомой является следующая формула:

нА « ((А & O A *) U ( O A & A *)).

Содержательный смысл данного определения должен быть ясен из вышесказанного. В частности, если А – формула языка L E L * (это означает, что в А нет вхождений оператора “н”), то А неопределенна тогда и только тогда, когда она выполнена в модели теории Т E Т*, а сходная с ней формула А* не выполнена в той же модели, или, наоборот, А не выполнена, но А* выполнена.

Теорию Т E Т* с присоединенной схемой определений

нА « ((А & O A *) U ( O A & A *)) в качестве новой аксиомной схемы назовем минимальной теорией с неопределенностью Тн в языке L н. Короче, минимальная Тн = Т E Т* E {нА « ((А & O A *) U ( O A & A *))}.

Интересно обсудить вопрос: относится ли предложенная конструкция к чистой логике, или она является частью прикладных построений? Уточним постановку вопроса. Пусть исходная теория Т – это просто одна из аксиоматических формулировок чистого исчисления предикатов первого порядка без равенства. Нет никаких причин сомневаться, что Т* тогда тоже относится к чистой логике. Но как быть в этом случае с минимальной Тн? Является ли Тн прикладной теорией (вроде арифметики или теории множеств), или ее все еще можно считать принадлежащей к чистой логике? Представляется убедительным следующий аргумент. Аксиомы прикладных теорий истинны не во всех универсумах, тогда как логические аксиомы верны при любых интерпретациях во всех непустых универсумах. Аксиомную схему нА « ((А & O A *) U ( O A & A *)) невозможно провалить по той же самой причине, по какой нельзя опровергнуть, например, сокращение (А & В) « O (А ® O В), добавленное к исчислению, сформулированному в языке { O , ® }. Так и в рассматриваемом случае. Формула нА « ((А & O A *) U ( O A & A *)) по сути является сокращением, позволяющем в более компактном виде представлять некоторые формулы. Можно, конечно, принять закон O ((А & В) « O (А ® O В) ), но это будет какая-то другая, неклассическая логика. Также можно придать унарной логической связке “н” какой-то другой смысл. Но это тоже будет уже другая логика.

Придадим сказанному формальный смысл. Пусть – структура для языка L E L *. Поскольку язык L E L * является языком исчисления предикатов первого порядка, функция интерпретации F предикатных, функциональных и индивидных констант из L E L * на непустом универсуме U стандартна. Все, что требуется для того, чтобы сделать структурой для языка L н, – это определить условие выполнимости для формул вида нА. Это условие очевидно: формула нА выполнена в структуре при оценке v тогда и только тогда, когда в при оценке v выполнена формула ((А & O A *) U ( O A & A *)). Тогда верно следующее утверждение (в котором знак логического закона “ u = ” имеет обычное классическое значение).

Предложение 2 . u = (нА « ((А & O A *) ? ( O A & A *))).

Однако чисто логическая теория Тн моментально превратится в прикладную, как только мы примем аксиому о том, что конкретная выполнимая формула А является неопределенной. Аксиома нА для такой формулы может выполняться в одних интерпретациях и не выполняться в других, как и положено аксиомам прикладных теорий. Но в этом случае теория Тн перестанет быть минимальной.

Предложение 3 . Для любой теории Т теория Т E Т* является ее консервативным расширением, а минимальная теория Тн является консервативным расширением Т E Т* (и, значит, также Т).

Как и всякую теорию, минимальную теорию Тн можно расширять, причем не обязательно формулами, содержащими оператор “н”. В качестве новой аксиомы к Тн разрешается добавлять любую формулу языка L н. Разумеется, в результате расширение уже не обязано быть консервативным. Тем не менее, каковы бы ни были теории с неопределенностью Тн, для них верны все стандартные метатеоремы о первопорядковых теориях классической логики. Иными словами, выполняется своего рода принцип переноса . Данный факт имеет место потому, что по сути дела теории Тн не выводят нас за рамки классической логики. В частности, каждую формулу теории Тн, содержащую оператор “н”, можно заменить эквивалентной ей формулой без этого оператора, элиминировав, таким образом, оператор неопределенности “н”.

Зато введение этого оператора позволяет в компактном виде сформулировать ряд неклассических идей, связанных с неопределенностью. Начнем с семантики. Будем использовать понятие выполнимости в обычном смысле с учетом расширения его на формулы вида нА, как было определено выше. Пусть А – формула языка L н и – структура для языка L н. А определенно выполнена в структуре при оценке v , если как А, так и А* выполнена в структуре при оценке v . А определенно не выполнена в структуре при оценке v , если как А, так и А* не выполнена в структуре при оценке v . Если в классическом случае любая формула либо выполнена, либо не выполнена, то здесь появляется третья возможность. Формула А неопределенно выполнена в структуре при оценке v , если либо А выполнена в структуре при оценке v , но А* не выполнена в структуре при оценке v , либо А не выполнена в структуре при оценке v , но А* выполнена в структуре при оценке v .

Предложение 4 . Формула нА определенно выполнена в структуре при оценке v тогда и только тогда, когда А неопределенно выполнена в структуре при оценке v .

Докажем это утверждение. Пусть нА определенно выполнена в структуре при оценке v . Значит, как нА, так и нА* выполнена в структуре при оценке v . Согласно определению выполнимости для формул вида нА, получаем, что в структуре при оценке v выполнена формула ((А & O A *) U ( O A & A *)). Дизъюнкция C U D выполнена, если выполнена формула С или выполнена формула D . Допустим, (А & O A *) выполнена в структуре при оценке v . Тогда и А, и O А* выполнена в структуре при оценке v . Раз O А* выполнена, то А* не выполнена в структуре при оценке v , т. е. А неопределенно выполнена в структуре при оценке v , что и требовалось. Случай ( O A & A *) рассматривается аналогично.

Пусть теперь А неопределенно выполнена в структуре при оценке v . Тогда либо А выполнена в структуре при оценке v , но А* не выполнена в структуре при оценке v , либо А не выполнена в структуре при оценке v , но А* выполнена в структуре при оценке v . Рассмотрим первую возможность. Так как А* не выполнена в структуре при оценке v , O А* выполнена в структуре при оценке v . Значит, в структуре при оценке v выполнена конъюнкция (А & O A *) и, следовательно, дизъюнкция ((А & O A *) U ( O A & A *)), что и требовалось. Вторая возможность рассматривается аналогичным образом.

Формула А принимает значение 1 ( определенно истинно ) в структуре , если А определенно выполнена структуре при всех оценках v . Формула А принимает значение 0 ( определенно ложно ) в структуре , если А определенно не выполнена структуре при всех оценках v . Формула А принимает истинностное значение 1/0 ( неопределенность ), если А неопределенно выполнена структуре при всех оценках v .

Разумеется (как и в классическом случае, когда незамкнутая формула может быть ни истинной, ни ложной), незамкнутая формула может быть ни истинной, ни ложной, ни неопределенной. Зато каждая замкнутая формула в семантике неопределенности получит какое-то из трех истинностных значений.

Предложение 5 . Если А – замкнутая формула языка L н, то в любой структуре для языка L н А получит одно и только одно из трех истинностных значений: либо ¦А¦ = 1, либо ¦А¦ = 0, либо ¦А¦ = 1/0.

Еще одним очевидным следствием принятых определений является следующее утверждение.

Предложение 6 . Унарные связки “ O ” и “н” подчиняются вышеприведенной таблице истинности, тогда как бинарные связки не могут быть заданы конечной таблицей истинности.

Предложение 7 . Пусть А – замкнутая формула. Тогда ¦нА¦ = ¦нА*¦ = ¦н O А¦ = ¦н O А*¦. При этом либо ¦нА¦ = 1, либо ¦нА¦ = 0.

Для доказательства данного утверждения достаточно обратить внимание, что условия выполнимости для нА и нА* эквивалентны ввиду того, что А неопределенно выполнена тогда и только тогда, когда А* неопределенно выполнена. Аналогичным образом, если формула А неопределенно выполнена, то и O А также неопределенно выполнена, и наоборот. Поэтому можно было бы сказать, что если А неопределенно не выполнена, то и O А также неопределенно не выполнена. То есть в условиях неопределенности выполнимость и невыполнимость совпадают. В случае неопределенности А формула нА будет определенно истинной, а в случае определенной истинности или определенной ложности А формула нА окажется определенно ложной. Случай ¦нА¦ = 1/0 поэтому исключается. С философской точки зрения это означает, что утверждение неопределенности или, равным образом, отрицание неопределенности, само вполне определенно. Но так и должно быть. Либо неопределенность есть, либо ее нет. Словосочетание “неопределенная неопределенность”, на наш взгляд, лишено смысла.

Стандартное понятие общезначимой формулы распространяется на построенную трехзначную семантику естественным образом: вместо истинно надо сказать определенно истинно . Точнее, формула А языка L н является н- общезначимой , если А определенно истинна в любой структуре для языка L н. Для обычной общезначимости пишем u = А, а для н-общезначимости будем использовать запись н u = А.

Принципиальное значение имеет следующее утверждение.

Предложение 8 . Для любой формулы А языка L н u = А тогда и только тогда, когда н u = А.

Из определений ясно, что если н u = А, то не только u = А, но и u = А*. Доказательство в обратную сторону основывается на том факте, что u = А U u = А* (ведь формулы А и А* имеют одинаковую структуру). Рутинные детали опустим.

Осуществив столь же естественное распространение на семантику неопределенности понятия логического следования (снова достаточно в нужных местах добавить слово “определенно”), получим более общее утверждение.

Предложение 9 . Г u = А U Г н u = А.

Наконец, используя теорему полноты для классической логики, получаем следующее утверждение.

Предложение 10 . Тн ? ? А U н u = А.

Пора проиллюстрировать логическую теорию неопределенности конкретными примерами рассуждений в неопределенных условиях. Лучше всего это сделать, обратившись к логике исторических рассуждений, поскольку именно исследователям уже исчезнувших событий прошлого приходится сталкиваться с неопределенностями там, где аналогичные события, будь мы их очевидцами, не вызвали бы вопросов.

Более конкретно, мы займемся проблемой прямого правила удаления квантора существования в рассуждениях историков. Но вначале необходимо показать, как эта проблема решалась в классической и интуиционистской (ставшей уже почти классической) логике. Одним из способов решения было ведение e -оператора. Как известно, идея исчисления с e -термином принадлежит Д. Гильберту. Смысл выражения вида e хА(х) состоит в указании на некий индивид, обладающий свойством А(х), если такой индивид существует. Знаки индивидов называются именами, однако в рассматриваемом случае мы имеем дело с именем не конкретного, а неопределенного индивида, произвольно выбранного среди объектов, удовлетворяющих свойству А(х), если таковые вообще найдутся. Поэтому оператор e получил название оператора неопределенной дескрипции . Существует также оператор определенной дескрипции , обычно обозначаемый символом i , который указывает на индивид однозначным образом. В трактовке Д. Гильберта требование однозначности обеспечивается доказательством существования и единственности введенного с помощью i -оператора объекта. Выражение i хА(х) имеет смысл тогда и только тогда, когда предварительно доказано, во-первых, что $ хА(х) (объект существует) и, во-вторых, что " х " у((А(х) & А(у)) ® х = у) (объект единственен) [7], или, в сокращенной форме, $ !хА(х). Отказываясь от слишком обременительного условия доказательства единственности и оставляя требование доказательства существования, приходим к h -оператору, который (так же, как и e ) оказывается оператором неопределенной дескрипции, поскольку указывает на произвольный объект, удовлетворяющий свойству А(х): h хА(х) означает результат выбора некоторого индивида, выполняющего свойство А(х).

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее