151437 (Дифракція світла)

2016-08-01СтудИзба

Описание файла

Документ из архива "Дифракція світла", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151437"

Текст из документа "151437"

ДИФРАКЦІЯ СВІТЛА

1. Принцип Гюйгенса-Френеля

Під дифракцією світла розуміють будь-яке відхилення світлових променів від прямих ліній, що виникають у результаті обмеження чи перекручування хвильового фронту. Найпростішим дифракційним прикладом є відсутність чітких границь світла і тіні при висвітленні отвору в непрозорому екрані (рис. 1). Якби світло поширювалося строго прямолінійно, то тінь за екраном мала б чітку межу. Однак на практиці перехід від світла до тіні в площині спостереження відбувається поступово, а при використанні квазімонохроматичних джерел можливе спостереження біля геометричної границі світла і тіні, що чергуються, світлих і темних смуг. Дифракція є прямим наслідком хвильової природи світла і має місце для будь-яких інших хвиль, наприклад акустичних. Основна задача, що виникає при розгляді дифракційних явищ, складається в обчисленні розподілу інтенсивності світла в області дифракції. Ця задача в багатьох практично важливих випадках може бути розв’язана на базі принципу Гюйгенса-Френеля. Пояснимо цей принцип на прикладі обчислення світлового збурювання в деякій точці М, вилученої від точкового джерела монохроматичного випромінювання (рис. 2). Оточимо джерело уявлюваною замкнутою поверхнею , за яку можна взяти будь-яку хвильову поверхню. Кут між нормаллю до хвильової поверхні сг і напрямком на точку спостереження (точку М) називають кутом дифракції. Принцип Гюйгенса-Френеля зводиться до наступного: 1. Кожна точка уявлюваної замкнутої поверхні є джерелом вторинної хвилі, амплітуда і фаза якої задаються реальним джерелом. 2. Усі вторинні хвилі когерентні і їхні комплексні амплітуди в будь-якій точці спостереження М можна складати (інтерференція вторинних хвиль). 3. Амплітуда вторинних хвиль убуває при збільшенні кута дифракції і максимальна при = 0.

Рисунок 1- Дифракція світла на отворі в непрозорому екрані: 1- джерело світла; 2- непрозорий екран з отвором; 3- площина спостереження

Рис. 2- До пояснення принципу Гюйгенса-Френеля

Запишемо названі положення, математично охарактеризувавши залежність амплітуди вторинних хвиль від кута коефіцієнтом нахилу К().

Комплексна амплітуда світлового коливання dU, створюваного в точці М одним довільним елементом d, виразиться співвідношенням:

dU = K() ,(1)

де А- амплітуда хвилі, створюваної реальним точковим джерелом на одиничній відстані від нього; r- відстань від точкового джерела до обраної точки на поверхні; k = 2/; s- відстань від точки на поверхні до точки спостереження М.

Другий співмножник виразу (1) описує сферичну хвилю від реального джерела на відстані м від нього, а третій співмножник - вторинну хвилю від ділянки поверхні d на відстані s від цієї ділянки. Результуюче світлове збурювання в точці М визначається підсумовуванням усіх вторинних хвиль, що йдуть від різних точок поверхні . Математично підсумовування вторинних хвиль означає інтегрування виразу (1). У результаті маємо

U(M) = A ,(2)

де - площа поверхні, що оточує джерело.

Якщо на шляху поширення світла є непрозорі екрани з отворами, то інтегрування у формулі (2) виконують по площі отворів. У кожну точку спостереження (точку М) від кожної точки отворів направляється своя вторинна хвиля. Ці хвилі часто називають дифрагованими, а відповідні їм хвильові нормалі- дифрагованими променями. Спочатку принцип Гюйгенса-Френеля був сформульований як гіпотеза, причому точний вираз для коефіцієнта КР, був невідомим. Більш пізній, наприкінці XIX в., він був доведений Кірхгофом шляхом рішення хвильового розв’язання (1.4) при задачі значень комплексної, амплітуди і її першої похідної у всіх точках замкнутої поверхні, що оточує досліджувану точку. Це розв’язання може бути записане у видгляі (2), причому для К() справедливий такий вираз:

K() = (-i/2)(1 + cos ).(3)

Наявність у формулі (3) комплексної одиниці i показує, що вторинні хвилі мають фазу, відмінну на 90 від фази падаючої хвилі. Це говорить про те, що вторинні хвилі не мають прямого фізичного змісту, і їхній необхідно розглядати лише як зручну модель для чисельного розв’язання дифракційних задач.

2. Дифракція Фраунгофера

Застосування формули (2) для розв’язання обчислювальних дифракційних задач досить трудомістке. Спростимо цю формулу щодо практично важливого випадку нормального висвітлення отвору маленьких розмірів плоскою хвилею і спостереженням дифракційного ефекту при великому відлучені від отвору (рис. 3). Початок координат помістимо усередині отвору, оси Х і У розташуємо в площині отвору, а вісь Z, направимо у сторону поширення пучка, що висвітлює. Обчислимо світлове збурювання в точці М, розташованої на невеликій відстані від осі Z. При зазначених умовах К() const, l/s = const і формулу (2) можна записати у такому вигляді:

U(M) = C1 ,(4)

де C1- постійна комплексна величина; s = - відстань від довільної точки отвору (x, y, O) до точки спостереження (xm, ym, z) .

Якщо d проходить весь отвір О, відстань s у загальному випадку змінюється на велике число довжин хвиль , -тому множник ехр (ikr) буде багаторазово осцилирований. Розкладемо змінну величину s у статечний ряд щодо координат точки отвору (точки N) і запишемо результат у такому вигляді:

(5)

де - відстань від початку координат О до точки спостереження М.

Рисунок 3- До виведення дифракційного інтеграла Фраунгофера

Якщо площина спостереження дифракційної картини досить вилучена від отвору, то в розкладанні (5) можна обмежитися тільки двома першими доданками. У цьому випадку говорять про дифракцію в далекій зоні, чи дифракції Фраунгофера. Підставивши перші два розкладання, що складаються, (5) у формулу (4), одержимо, що

.

Вхідні в круглі дужки відношення xM/s = соs α = р і yM/s = соs = q є направляючими косинусами по осях координат Х і У вектора, проведеного з початку координат у точку спостереження (рис. 4). З обліком уведених направляючих косинусів представимо останнє співвідношення у вигляді наступного виразу, що називають дифракційним інтегралом Фраунгофера:

,(6)

де С = С1 ехр (iks).

Можна показати, що коефіцієнт C залежить від довжини світлової хвилі, площі отвору і сповненої енергії випромінювання, що падає на отвір.

Дифракційну картину Фраунгофера називають просторовим спектром. Дифракційний інтеграл Фраунгофера справедливий, строго кажучи, тільки в граничному випадку при s' , тобто якщо точка спостереження знаходиться в нескінченності (рис. 5, а). Практично цей інтеграл можна використовувати, якщо

s' >> (x2 + y2)max/,

де х, у - координати точок отвору.

Рисунок 4- Кути з осями координат вектора на точку спостереження

Якщо за отвором на відстані d від нього помістити високоякісний об'єктив О, то йдуть під пазними кутами рівнобіжні пучки дифрагованих променів, що будуть збиратися у відповідні точки фокальної площини об'єктива (рис. 5, б). Отже, дифракційна картина Фраунгофера з нескінченно вилученої площини переноситься у фокальну площину об'єктива; при цьому дифракційний інтеграл Фраунгофера точно описує розподіл комплексної амплітуди у фокальній площині об'єктива при його висвітленні рівнобіжним пучком променів. Введемо у фокальній площині об'єктива систему координат , . Дифрагований пучок з направляючими косинусами р, q фокусується об'єктивом у точку фокальної площини з координатами pf', qf', де f'- фокусна відстань об'єктива.

Рисунок 5- Дифракція Фраунгофера у нескінченності; у фокальній площині об'єктива

У формулі (6) зручніше записати нескінченні границі інтегрування, а кінцеву площу отвору а врахувати так називаною функцією зіниці Р (х, у), рівній одиниці усередині отвору і рівної нулю поза ними. З обліком сказаного можна записати наступний вираз для дифракційного інтеграла щодо фокальної площини об'єктива:

.(7)

Коефіцієнт, що стоїть перед інтегралом, С в загальному випадку залежить від координат , . Однак при розташуванні екрана з отвором у передній фокальній площині об'єктива коефіцієнт С є постійною величиною для всіх точок задньої фокальної площини. Допустимо, що в площину отвору введений плоский предмет з амплітудним коефіцієнтом пропущення t (х, у) (рис. 6). Такий предмет змінює амплітуди вторинних хвиль t (х, у) разів, і тому у формулі (7) функцію зіниці Р (х, у) можна замінити на t(х, у):

.(8)

Ця формула збігається з двовимірним перетворенням Фур'є функції t (х, у), що позначимо (х, у).

Рисунок 6- Схема виконання перетворення Фур'є за допомогою об'єктив

Таким чином, якщо в передній фокальній площині об'єктива розташувати плоский транспарант із функцією коефіцієнта пропущення t (х, у) і освітити транспарант плоскою монохроматичною хвилею, то в задній фокальній площині об'єктива утвориться розподіл комплексної амплітуди світлового збурювання, зв'язаний з t (х, у) перетворенням Фур'є  {t (х, у)}. Ця важлива властивість об'єктива широко використовується в багатьох сучасних пристроях оптичної обробки інформації.

3. Дифракція на отворах різної форми

Досліджуємо картини дифракції Фраунгофера від отворів різної форми, що спостерігаються при нормальному висвітленні отворів монохроматичним світлом. Відносний розподіл інтенсивності в дифракційних картинах обчислимо за допомогою дифракційного інтеграла Фраунгофера (6). Розглянемо спочатку випадок дифракції на прямокутному отворі (рис. 7, а). Якщо початок координат розташувати в центрі прямокутника, а осі Х і Y направити паралельно його сторонам, то дифракційний інтеграл Фраунгофера (6) приймає вигляд:

.

Обидва одномірних інтеграла розвязуються однотипно. Запишемо, наприклад, розв’язання першого інтеграла:

.

Рисунок 7- Дифракція на прямокутному отворі: а- форма отвору, б- просторовий спектр

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее