LITOBZOR (Экспериментальное определение тока шнурования в пропанокислородных смесях), страница 2

2016-08-01СтудИзба

Описание файла

Документ из архива "Экспериментальное определение тока шнурования в пропанокислородных смесях", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "LITOBZOR"

Текст 2 страницы из документа "LITOBZOR"

В трубке без протока газа тепло отводится к стенкам, которые имеют комнатную температуру Т0. Плотность потока тепла к стенкам равна

Если оперировать средней по сечению температурой Т, то потеря энергии газом в 1 с из расчета на 1 см3 с точностью до численного коэффициента равна T-T0)/R2. Ее можно представить в виде Ncp(T - T0)T, где ср - теплоемкость, рассчитанная на одну молекулу, T - частота теплоотвода T=cp - температуропроводность, а =R/8, N - число частиц. Она аналогична частоте диффузии D=D/2.

Возможен еще один механизм вывода тепла из разряда, который используется в современных мощных лазерах - прокачка газа через разряд. Этот механизм называют конвективным охлаждением. Речь идет о выводе тепла из разрядного объема. Если по-прежнему оперировать средней по длине потока L1 температурой Т, то скорость теплоотвода из разрядного объема можно записать в том же виде Ncp(T - T0)F, Т0 - температура газа, вступающего в разряд, а F = 2u/L1 , u - скорость потока. В продольном разряде L1=L - расстояние между электродами. Тогда нестационарное уравнение баланса запишется в виде

Опыт показывает, что в разряде, контролируемом диффузией, ВАХ изобразится не горизонтальной прямой, а слегка падающей. Это является следствием нагревания газа. У оси плотность тока больше, чем у стенок, так как там больше концентрация электронов (Е одинаково по сечению). Энерговыделение и температура газа на оси выше, чем у стенок. Поскольку частота ионизации фактически зависит не от Е/p, а от E/N, для поддержания ионизации в основной части токового сечения требуется меньшее поле, уменьшается и напряжение [15].

1.4. Устойчивое и неустойчивое состояния

Когда ВАХ имеет падающий характер, нагрузочная прямая зачастую пересекает ее не в одной, а в двух точках (рис.5). Одно из состояний, а именно верхнее, является неустойчивым и поэтому не реализуется. В самом деле, если по какой-то причине ток случайно повышается, для его поддержания достаточно будет меньшего напряжения, чем фактическое, которое при данных ЭДС и внешнем сопротивлении непременно соответствует нагрузочной прямой.

Возникнет дисбаланс между ионизацией и гибелью электронов, ионизация начнет расти, сопротивление разряда падать, ток расти, пока состояние не достигнет нижней точки пересечения. Нижнее состояние устойчиво. При ne>0, i>0 напряжение станет меньше необходимого и повышенная гибель вернет степень ионизации в исходное состояние.

Опыт показывает, что разряд редко сохраняет диффузную форму, если газ в нем нагревается заметным образом, скажем вдвое, происходит контракция - стягивание столба в шнур, где степень ионизации, плотность тока и газовая температура резко повышаются - это преддверие к переходу тлеющего разряда в дугу при еще больших токах. Приведенные масштабы характеризуют верхние границы реализации слабоионизированной холодной плазмы диффузного тлеющего разряда. Чем выше давление, тем ниже по току и плотности электронов эта верхняя граница, тем сильнее нагревается газ при данном токе. Значит, для осуществления неравновесной слабоионизированной плазмы благоприятны низкие давления, для осуществления равновесной - высокие, порядка атмосферного.

Однородное состояние положительного столба тлеющего разряда часто оказывается неустойчивым, в особенности когда разряд происходит в больших объемах при повышенных давлениях, когда сильны ток и выделение джоулева тепла. Случайные возмущения катастрофически нарастают и плазма переходит в иное, пространственно неоднородное состояние. Вызываемые неустойчивостями неоднородные формации страты - разбиение положительного столба вдоль тока на чередующиеся светлые и темные слои [16]; контракция - стягивание плазмы в ярко светящийся токовый шнур известны давно [17,18]. Но в последнее время эти эффекты стали объектом особого внимания из-за тех затруднений, которые они вносят в создание мощных газовых лазеров. Преодоление тенденции к шнурованию разряда вылилось в центральную и самую трудную проблему при создании мощных электроразрядных лазеров.

Феноменологический признак устойчивости или неустойчивости

Неоднородность плазмы нередко видна на глаз. Неодинаковость свечения вызывается в первую очередь неодинаковостью плотности электронов. Стали быть, причины, приводящие к неоднородности, связаны с процессами, которые управляют плотностью электронов, их рождением, гибелью, переносом в пространстве.

Стационарному состоянию отвечает равенство скоростей и рождения и гибели Z+=Z- . Точке пересечения функций Z+(ne) и Z-(ne) соответствует стационарная плотность электронов ne(0), которая в конечном счете определяется внешними условиями: ЭДС источника, геометрией, более непосредственно - величиной тока, пропускаемого через разряд.

Рис. 6 а. Рис. 6 б.

Об устойчивости стационарного состояния можно судить по взаимному расположению кривых в его окрестности. Если при ne>ne(0) Z- проходит выше, а при ne<ne(0) - ниже (кривой рождения рис. 6 а.), состояние устойчиво, ибо при случайном отклонении от равновесия система к нему возвращается. В противном случае (рис. 6 б) состояние неустойчиво: при случайном возрастании ne рождение становится больше гибели и число электронов увеличивается еще сильнее.

Стабилизирующие и дестабилизирующие факторы

Указанные соображения позволяют качественно квалифицировать влияние различных факторов на устойчивость.

Диффузия и теплопроводность помогают рассасыванию неоднородностей плотностей частиц и температуры и поэтому принадлежат к числу стабилизирующих факторов.

Дестабилизирующую роль играет нагрев газа. Поскольку давление в газе выравнивается быстро, локальное повышение газовой температуры сопровождается уменьшением плотности (тепловым расширением). На величине поля это непосредственно не сказывается, но отношение E/N и зависящая от него Te возрастают. Это ведет к усилению ионизации, локальному повышению проводимости, плотности тока j и выделению джоулева тепла jE или . В результате газ нагревается еще сильнее. Это так называемая ионизационно-перегревная неустойчивость, наиболее распространенная и опасная.

Дестабилизируют разряд также ступенчатая ионизация и накопление метастабильных атомов и молекул. В сущности, вопрос об устойчивости решается тем, кто выйдет победителем в соревновании дестабилизирующих и стабилизирующих факторов.

Продольные и поперечные неоднородности

Цепочки причинных связей между различными процессами при развитии возмущений и их конечный результат зависят от ориентации неоднородностей по отношению к направлениям электрического тока и поля. Если ne меняется вдоль направления Е, в результате нарастания таких продольных возмущений ne (рис. 7а) образуются страты. В результате нарастания поперечных возмущений (рис. 7б) происходит контракция и образуются шнуры с резко повышенной плотностью электронов -вдоль них и течет ток. В трубках плазма стягивается к оси, а в

плоском канале шнуров бывает несколько. При одномерных поперечных возмущениях и в случае сформировавшихся шнуров поле вдоль его направления остается неизменным. Во времени поле изменяться может, но повсюду одинаково (при шнуровании возрастает величина разрядного тока и напряжение на электродах падает).

1. 5. Инкремент нарастания неустойчивости

ne=ne(0) +ne , ne=(ne)a ei(wt - kr)

- поперечные возмущения, - продольные.

Подстановка таких выражений в уравнения дает связь между амплитудами возмущений различных параметров (ne , Тe), дисперсионное соотношение, связывающее комплексную частоту w c k. Если Re i>0 возмущения будут нарастать по экспоненциальному закону. Характерное время развития неустойчивости . Если  , возмущения затухают, то есть состояние устойчиво.

Рассасывание объемного заряда = n+ - ne - n- в среде с постоянной проводимостью определяется

 время исчезновения объемного заряда.

Давление выравнивается в пространстве со скоростью звука с. Электронная теплопроводность в слабо ионизированном газе kneDe; соответствующая температуропроводность e=De .

1.6. Механизмы неустойчивостей

  1. Ионизационно-перегревная неустойчивость.

Приводит к контракции разряда, образованию токовых шнуров, в которых степень ионизации и температура газа резко повышены по сравнению с тлеющим разрядом. Развивается неустойчивость из поперечных неоднородностей, когда Е остается однородным вдоль направления тока.

Механизм неустойчивости отражается следующей замкнутой цепочкой причинных связей

Скорость нарастания возмущений лимитируется нагреванием газа.

  1. Прилипательная неустойчивость.

Возникает при неслишком больших (ne<1010см-3) и сравнимых концентраций ne и ni. В ее результате могут образоваться домены. Домены - разновидность страт.

Цепочка причинных связей

a - частота прилипания.

  1. Ступенчатая ионизация.

1.7. Контракция положительного столба

Для того, чтобы подавляющая часть электронов оказалась сосредоточенной в тонком канале около оси трубки, необходимо выполнения, по крайней мере, двух условий:

  1. Электроны должны рождаться преимущественно там, где высока их плотность. Частота ионизации i должна резко падать от оси к периферии. Если нет зависимости i от r, как в диффузном разряде, источники электронов распределяются по объему пропорционально концентрации электронов. Продольное поле при контракции остается однородным по сечению, поскольку rotE=0.

  2. Гибель электронов должна иметь объемный характер, причем быть достаточно быстрой, чтобы будучи рожденным в шнуре, электрон не мог далеко продиффундировать от него в сторону. Электроны обязаны гибнуть недалеко от места рождения. По этой причине контракция возникает только при достаточно сильных токах и больших ne, когда объемная рекомбинация преобладает рекомбинацией на стенках.

В плоских каналах с быстрым протоком лазерных смесей четко наблюдается зависимость предельного энерговклада, при котором происходит шнурование, от скорости потока u. Чем больше u , тем меньше времени проходит газовая частица в разряде, тем меньше времени имеется для как для нагревания газа, так и для развития неустойчивости, тем стабильнее оказывается разряд и тем сильнее можно поднять ток до срыва его однородности.

Систематическое исследование перехода диффузного тлеющего разряда в контрагированное состояние было сделано только в трубках. Результаты одной из работ [8], где получена весьма полная информация о явлении.

Левая часть ВАХ до скачка соответствует диффузному разряду, ne~J0(2,4r/R). При критическом значении тока поле и напряжение скачком уменьшаются, чему соответствует скачкообразный переход однородного столба в контрагированную форму (см. рис. 8). У оси появляется светящийся шнур, а остальная часть трубки темнеет neкрит(0)~1011 см-3.

Из рис. 9 видно, как резко сжимается при контракции токовый канал, который характеризуется проводимостью или концентрацией электронов.

Диффузному состоянию отвечает очень низкое Е/р=0,12 В/(см тор). По-видимому, здесь сказывается действие ступенчатой ионизации метастабильных молекул азота (рис.10), облегчающее рождение электронов. В контрагированном состоянии после скачка на оси образуется токовый шнур r=0,5 мм. Добавка азота стабилизирует разряд, в чистом ксеноне переход происходит при гораздо более слабом токе (1 мА вместо 19 мА), чем с азотом [8].

Контракция в разряде с потоком. В плоских каналах с быстрым протоком лазерных смесей четко наблюдается зависимость предельного энерговклада, при котором происходит шнурование, от скорости потока. Чем она больше, тем меньше времени проводит газовая частица в разряде, тем меньше времени имеется как для нагревания газа, так и для развития неустойчивости, тем стабильнее оказывается разряд и тем сильнее можно поднять ток до срыва его однородности. Контракция наблюдалась всякий раз, когда температура повышалась ~ на 100 К. Все это говорит в пользу тепловой природы контракции в этих условиях [19].

1.8.Диффузионный режим горения тлеющего разряда в трубках

Стационарный тлеющий разряд в трубках устанавливается вследствие ионизации газовой среды под действием постоянного электрического поля. При этом основной областью разряда является положительный столб. Эта область разряда однородна вдоль оси трубки. В радиальном же направлении плазма конечно неоднородна вследствии дифузии заряженных частиц, а также из-за того, что отвод тепла из объема осуществляется через стенки трубки.

Радиальное распределение плотоности электронов ne(r) положительном столбе газового разряда в предположении, когда средняя длина свободного пробега электронов мала по сравнению с радиусом трубки, а концентрация заряженных частиц достаточно большая, так что плазму можно считать квазинейтральной (дебаевский радиус мал по сравнению с радиусом трубки) дается решением уравнения баланса для электронов

Здесь первое слагаемое описывает диффузию электронов на стенки разрядной трубки (Da - коэффициент амбиполярной диффузии), второе слагаемое соответствует ионизации атомов или молекул при их соударениях с электронами (i - частота подобных соударений), последнее слагаемое отражает исчезновение электронов из области разряда в результате объемных процессов (r - коэффициент электрон-ионной рекомбинации). Обычно в качесве граничных условий используются соотношения

Решением уравнения, когда рекомбинация заряженных частиц несущественна, а параметры постоянны по сечению разрядной трубки, является бесселева функция нулевого порядка с действительным аргументом:

или

из граничных условий вытекает условие R(i /Da)1/2=2.405 , называемое условием Шотки. Оно означает, что в стационарном положительном столбе, горящего в диффузионном режиме, напряженность электрического поля, которое может быть приложено к газоразрядной трубке, заполненной каким-либо газом, не зависит от концентрации электронов и, следовательно, от разрядного тока.

Наиболее общими причинами радиальной неоднородности плазмы стационарного положительного столба тлеющего разряда является перенос тепла через стенки трубки и, как вследствие этого, радиальная неоднородность температуры газа.

При рассмотрении термически неоднородного положительного столба разряда, подчиняющегося условию

6Da/R2 << ner , (*)

степень сжатия определяется, во-первых, градиентом температуры газа в положительном столбе, а во-вторых, чувствительностью частоты ионизации и коэффициента рекомбинации к изменению температуры газа.

Подводя итог, можно сказать, что контракция тлеющего газового разряда в цилиндрических трубках обусловлена двумя основными факторами: во-первых, с увеличением разрядного тока и давления газа разряд переходит из диффузионного в объемный режим горения, и, во-вторых, становится существенной неоднородность температуры газа вдоль радиуса трубки. Условие преобладания объемной рекомбинации электронов над их уходом из области разряда за счет диффузии выражается неравенством (*). Условие неоднородности температуры газа, приводящее к существенной неоднородности частоты ионизации, выражается неравенством

ne>T0/R2eEveb (**)

Объединяя неравенства (*) и (**) в одно выражение, дающее нижнюю оценку концентраци электронов в положительном столбе, при достижении которой начнется контрагирование тлеющего разряда:

neR2 > max [6Da/r , T0/eEveb].

Примечательно, что из этого выражения следует ограничение на ток, Jmax, который может протекать в неконтрагированном тлеющем разряде. Действительно, полный ток разряда записывается в виде

J = eneeER2.

При пропускании большего тока либо за счет увеличения плотности плазмы, либо при переходе к трубкам с большим радиусом тлеющий разряд контрагирует. Таким образом, тепловая контракция является принципиальным физическим явлением, ограничивающим ток однородного тлеющего разряда в цилиндрических трубках.

Особенности контракции тлеющего разряда в молекулярных газах

Особенности разряда в молекулярных газах определяются в первую очередь тем, что у молекул есть низколежащие энергетические уровни, соответствующие внутримолекулярным колебаниям. Энергия колебательного кванта ~0.1 эВ, так что при значениях температуры электронов, типичных для плазмы тлеющего разряда, значительная часть энергии, вводимой в разряд молекулярного газа, расходуется на возбуждение колебательных уровней молекул. Вероятность релаксации энергии внутримолекулярных колебаний в температуру газа (V, T-релаксация) весьма мала. Значения характерного времени V, T - релаксаци в молекулярном масштабе, естественной единицей которого является время свободного пробега молекул между столкновениями, достигают десятков и даже сотен тысяч единиц. Поэтому в довольно широком диапазоне изменения условий разряда молекулярный газ может находиться в неравновесном состоянии. В этом состоянии запас колебательной энергии молекул существенно превышает равновесное значение, соответствующее температуре газа, которая в свою очередь может быть близка к температуре стенок разрядной трубки. По этой причине вытеснение газа из приосевой зоны разряда, приводящее к тепловой контракции тлеющего разряда в трубках, в молекулярном газе будет не слишком большим, как в атомарном. Примечательно, что с ростом температуры газа скорость V, T - релаксации растет [22].

С другой стороны, известно, что если скорость выделения тепла в газовой среде является функцией, достаточно быстро растущей с температурой, а отвод тепла осуществляется за счет теплопроводности газа, то в среде при достижении определенного запаса энергии произойдет “тепловой взрыв”. В результате теплового взрыва в рассматриваемом случае вся энергия, запасенная в колебательных степенях свободы молекул, преобразуется в температуру газа, посе чего, естесвенно произойдет тепловая контракция тлеющего разряда. При описании этого явления потупают также, как при описании классического теплового взрыва [21], то есть ищут условие, при котором стационарное решение уравнений, описывающих распределение температуры газа в разрядной трубке будет невозможным.

Для установления условий контракции разряда в сильнонеравновесном молекулярном газе необходимо учитывать в энергетическом балансе плазмы кинетику обмена энергией между разными степенями свободы. Система уравнений, описывающих баланс поступательной и колебательной энергий:

(1)

(2)

где - теплопроводность газа; D - коэффициент диффузии возбужденных молекул; N и ne, M и m - концентрации и массы молекул и электронов соответственно; E(T) - среднее число колебательных квантов, приходящихся на одну молекулу; Е0(Т) - равновесное значение, отвечающее темепратуре газа Т; - энергия колебательного кванта; V,T -характерное время V, T - релаксации молекул; ke1 - коэффициент упругого рассеяния электронов на молекуле; kex - коэффициент возбуждения колебательных уровней молекул; Те - температура электронов.

В уравнении теплопроводности (1), имеющем стандартные граничные условия, второе слагаемое описывает нагрев газа в результате V, T - релаксации молекул, а третье - нагрев газа за счет упругих электронно-молекулярных соударений.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
433
Средний доход
с одного платного файла
Обучение Подробнее