generator (Получение и использование электрической энергии)

2016-08-01СтудИзба

Описание файла

Документ из архива "Получение и использование электрической энергии", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "generator"

Текст из документа "generator"

Генераторы переменного тока

В 1820 году было открыто взаимодействие между электрическим током, протекающим в проводнике, и магнитной стрелкой. Это явление было правильно объяснено и обобщено французским физиком Ампером, который установил, что магнитные свойства любого тела являются следствием того, что внутри него протекают замкнутые электрические токи. Таким образом, любые магнитные взаимодействия можно рассматривать как следствия электрических. Однако, если электрический ток вызывает магнитные явления, естественно было предположить, что и магнитные явления могут вызвать появление электрического тока. Долгое время физики в разных странах пытались обнаружить эту зависимость, но терпели неудачу. В самом деле, если, рядом с проводником или катушкой лежит постоянный магнит, никакого тока в проводнике не возникает. Но если начать перемещать этот магнит: приближать или удалять его от катушки, вводить и вынимать магнит из нее, то электрический ток в проводнике появляется, и его можно наблюдать в течение всего того периода, во время которого магнит движется. То есть электрический ток может возникать только в переменном магнитном поле.

Впервые эту важную закономерность установил в 1831 году английский физик Майкл Фарадей.

Майкл Фарадей родился в Лондоне в семье кузнеца. Мальчик смог получить лишь начальное образование. С двенадцати лет он работал, сначала разносчиком газет, затем подмастерьем в переплетной мастерской. Однако недостаток знаний Фарадей компенсирует самообразованием. Благодаря счастливой случайности юноша попадает в поле зрения известного химика Г. Дэви, который делает Фарадея своим ассистентом в Королевском институте (1813 г.).Главное научное достижение Фарадея в химии – методика сжижения газов. Опыты, проведенные Фарадеем в 1823 г., положили начало новому научному направлению – физике низких температур. Очень быстро Фарадей обогнал в искусстве эксперимента своего научного руководителя Дэви, что позднее было причиной многих трений между ними.

В 1821 г. Фарадей начал заниматься электрическими и магнитными явлениями. Он считал очевидным, что если ток в проводе создает магнитное поле, действующее на магнитную стрелку, если проводник с током движется в магнитном поле, то должно быть верно и обратное – магнитное поле должно создавать ток в проводнике. В течение многих лет Фарадею не удавалось доказать это экспериментально, так как он не понимал, что для возникновения тока важно относительное движение магнита и провода. Однажды почти случайно он заметил, что в момент вхождения магнита в катушку стрелка гальванометра отклоняется. Так был открыт закон электромагнитной индукции. На окончательную его формулировку (1831 г.) потребовалось десять лет напряженных исследований.

Все свои работы по электромагнетизму Фарадей в течение двадцати пяти лет представлял в виде докладов-серий в Лондонское королевское общество. Одно только перечисление полученных им результатов вызывает изумление его гением: открытие явления электромагнитной индукции (1831 г.); открытие законов электролиза (1834 г.); обнаружение поляризации диэлектриков и понятие о диэлектрической проницаемости (1837 г.); экспериментальное доказательство закона сохранения электрического заряда (1843 г.); открытие диамагнетизма и обнаружение явления вращения плоскости поляризации света в веществе, помещенном в магнитное поле (1845 г.); идея об электромагнитной природе света (1845 г.); открытие парамагнетизма (1847 г.).

Величайшей заслугой Фарадея стало то, что он высказал идею об электрическом и магнитном поле. Он не мог математически развить эти идеи, и в его монументальной работе "Экспериментальные исследования электричества" нет ни одного уравнения! Однако именно идеи Фарадея легли в основу уравнений Максвелла. Позднее Эйнштейн говорил, что в развитии электромагнетизма Фарадей по отношению к Максвеллу – то же самое, что в развитии механики Галилей по отношению к Ньютону.

Несмотря на успехи в науке, признание всего мира, Фарадей всю жизнь оставался скромным, очаровательным, простым человеком. Он многократно отказывался от наград и возможного благосостояния, полностью отдаваясь науке и разделяя идеалы закрытой сандеманской религиозной секты, которой он всю жизнь был предан. Он отклонил предложение стать президентом Лондонского королевского общества, а также предложение быть возведенным в дворянство. В завещании Фарадей просил, чтобы его прах покоился под самым простым могильным камнем.

Проведя серию опытов, Фарадей открыл, что электрический ток возникает (индуцируется) во всех тех случаях, когда происходит движение проводников относительно друг друга или относительно магнитов. Если вводить магнит в катушку, или перемещать катушку относительно неподвижного магнита в ней индуцируется ток. Если подвигать одну катушку к другой, через которую проходит электрический ток, в ней также появляется ток. Того же эффекта можно добиться при замыкании и размыкании цепи, поскольку в момент включения и выключения ток нарастает и убывает в катушке постепенно и создает вокруг нее переменное магнитное поле. По­этому если поблизости от такой катушки находится другая, не включенная в цепь, в ней возникает электрический ток. Открытие Фарадея имело огромные последствия для техники и всей че­ловеческой истории, так как теперь стало ясно, каким образом механическую энергию превращать в электрическую, а электрическую обратно в механи­ческую. Первое из этих преобразований легло в основу работы электрогене­ратора, а второе электродвигателя. Впрочем, сам факт открытия еще не означал, что все технические задачи на этом пути разрешены: около сорока лет ушло на создание работоспособного генератора и еще двадцать лет на изобретение удовлетворительной модели промышленного электродвигателя. Но главное: принцип действия двух этих важнейших элементов современной цивилизации сделался очевиден именно благодаря открытию явления элек­тромагнитной индукции.


Первый примитивный электрогенера­тор создал сам Фарадей. Для этого он по­местил медный диск между полюсами N и S постоянного магнита. При вращении диска в магнитном поле в нем наводились электрические токи. Если на периферии диска и в его центральной части помещали токоприемники в виде скользящих контактов, то между ними появлялась разность потенциалов, как на гальванической батарее. Замыкая цепь, можно было наблюдать на гальванометре непрерывное прохождение тока. Установка Фарадея годилась только для демонстраций, но вслед за ней появились первые магнитоэлектрические машины (так стали называть электрогенераторы, в которых использовались постоянные магниты), рассчитанные на создание работающих токов. Самой ранней из них была магнитоэлектрическая машина Пиксии, сконструированная в 1832 году. Принцип ее действия был очень прост: мимо неподвижных, снабженных сердечниками катушек двигались посредством кривошипа и зубчатой передачи лежащие против них полюсы подковообразного магнита, вслед­ствие чего в катушках индуцировались токи. Недостатком машины Пиксии было то, что в ней приходилось вращать тяжелые постоянные магниты. В последующем изобретатели обычно заставляли вращаться катушки, оставляя магниты неподвижными. Правда, при этом приходилось решать другую зада­чу: каким образом отвести во внешнюю цепь ток с вращающихся катушек? Это затруднение, однако, было легко преодолимо. Прежде всего, катушки соединяли между собой последовательно одними концами их проводки. То­гда другие концы могли служить полюсами генератора. Их соединяли с внешней цепью при помощи скользящих контактов. Он устроен следую­щим образом: на оси маши­ны крепились два изолиро­ванных металлических кольца, каждое из которых было соединено с одним из полюсов генера­тора. По окружности этих колец вращались две пло­ские металлические пружины, на которые была заключена внешняя цепь. При таком приспособлении уже не было никаких за­труднений от вращения оси машины ток переходил из оси в пружину в месте их соприкосновения. Еще одно неудобство заключалось в самом харак­тере тока электрогенерато­ра. Направление тока в ка­тушках зависит от того, приближаются они к полю­су магнита или удаляются от него. Из этого следует, что ток, возникающий во вращающемся проводнике, будет не постоянным, а переменным. По мере при­ближения катушки к одно­му из полюсов магнита си­ла тока будет нарастать от нуля до какого-то максимального значения, а затем по мере удаления вновь уменьшаться до ну­ля. При дальнейшем движении ток изменит свое направление на противопо­ложное и опять будет нарастать до какого-то максимального значения, а по­том убывать до нуля. Во время следующих оборотов этот процесс будет повторяться. Итак, в отличие от электрической батареи, электрогенератор соз­дает переменный ток, и с этим приходится считаться. Как известно, большинство современных электрических при­боров созданы таким образом, чтобы питаться от сети перемен­ного тока. Но в XIX веке перемен­ный ток был не удобен по многим причинам, прежде всего психоло­гическим, поскольку в прежние годы привыкли иметь дело с по­стоянным током: Впрочем, пере­менный ток можно было легко преобразовать в прерывистый, имеющий одно направление. Для этого достаточно было с помощью специального устройства коммутатора изменить контакты таким образом, чтобы скользящая пружина переходила с одного кольца на другой в тот момент, когда ток меняет свое направление. В этом случае один контакт постоянно получал ток одного на­правления, а другой противоположного. Не трудно было установить пружину таким образом, чтобы она переходила с одного кольца на другое в тот мо­мент, когда в обмотке катушки менялось направление тока, и тогда каждая пружина все время давала ток одного и того же направления. Другими сло­вами, они представляли из себя постоянные полюса; одна положительный, другая отрицательный, в то время как полюса катушек давали переменный ток. Электрогенератор прерывистого постоянного тока вполне мог заменить неудобную во многих отношениях гальваническую батарею, и потому вызвал большой интерес у тогдашних физиков и предпринимателей. В 1856 году французская фирма «Альянс» даже наладила серийный выпуск больших ди­намо-машин, приводившихся в действие от парового двигателя. В этих гене­раторах чугунная станина несла на себе неподвижно укрепленные в несколь­ко рядов подковообразные постоянные магниты, расположенные равномерно по окружности и радиально по отноше­нию к валу. В промежутках между ряда­ми магнитов на валу были установлены несущие колеса с большим числом ка­тушек. Также на валу был укреплен кол­лектор с 16-ю металлическими пласти­нами, изолированными друг от друга и от вала машины. Ток, наводимый в ка­тушках при вращении вала, снимался с коллектора при помощи роликов. Одна такая машина требовала для своего при­вода паровой двигатель мощностью 6— 10 л. с. Большим недостатком генерато­ров «Альянс» было то, что в них использовались постоянные магниты. Так как магнитное действие стальных магнитов сравнительно невелико, то для получе­ния сильных токов нужно было брать большие магниты и в большом числе. Под действием вибрации сила этих маг­нитов быстро ослабевала. Вследствие всех этих причин КПД машины всегда оставался очень низким. Но даже с таки­ми недостатками генераторы «Альянса» получили значительное распространение и господствовали на рынке в течение десяти лет, пока их не вытеснили более совершенные машины.

Прежде всего немецкий изобрета­тель Сименс усовершенствовал движущиеся катушки и их железные сердечники. (Эти катушки с железом внутри получили название «якоря» или «арматуры».) Якорь Сименса в форме «двой­ного Т» состоял из железного цилиндра, в котором были прорезаны с противоположных сторон два продольных желоба. В желобах помещалась изоли­рованная проволока, которая накладывалась по направлению оси цилиндра. Такой якорь вращался между полюсами магнита, которые тесно его обхваты­вали. По сравнению с прежними новый якорь представлял большие удобства. Прежде всего, очевидно, что катушка в виде цилиндра, вращающегося вокруг своей оси, в механическом отношении выгоднее катушки, насаженной на вал и вращавшейся вместе с ним. По отношению к магнитным действиям якорь Сименса имел ту выгоду, что давал возможность очень просто увеличить число действующих магнитов, для этого достаточно было удлинить якорь и прибавить несколько новых магнитов. Машина с таким якорем давала гораздо более равномерный ток, так как цилиндр был плотно окружен полюсами магнитов. Но эти достоинства не компенсировали главного недостатка всех магни­тоэлектрических машин — магнитное поле по-прежнему создавалось в гене­раторе с помощью постоянных магнитов. "Перед многими изобретателями в середине XIX века вставал вопрос: нельзя ли заменить неудобные металличе­ские магниты электрическими? Проблема заключалась в том, что электро­магниты сами потребляли электрическую энергию и для их возбуждения тре­бовалась отдельная батарея или, по крайней мере, отдельная магнитоэлек­трическая машина. Первое время казалось, что без них невозможно обойтись. В 1866 году Вильде создал удачную модель генератора, в котором металли­ческие магниты были заменены электромагнитами, а их возбуждение вызы­вала магнитоэлектрическая машина с постоянными магнитами, соединенная с тем же паровым двигателем, который приводил в движение большую ма­шину. Отсюда оставался только один шаг к динамо-машине, ко­торая возбуждает электромагниты своим собственным током.

В том же 1866 году Вернер Сименс открыл принцип самовозбуждения. В январе 1867 году он выступил в Берлинской Академии с докладом «О превращении рабочей силы в электрический ток без применения постоянных магнитов». В общих чертах его открытие заключалось в следующем. Сименс установил, что в каждом электромагните, после того как намагничивающий ток переставал действовать, всегда оставались небольшие следы магнетизма, которые были способны вызвать слабые индукционные токи в катушке, снабженной сердечником из мягкого магнитного железа и вращавшейся ме­жду полюсами магнита. Используя эти слабые токи, можно было привести генератор в действие без помощи внешних воздействий.

Первая динамо-машина, работавшая по принципу са­мовозбуждения, была созда­на в 1867 году англичанином Леддом, но в ней еще преду­сматривалась отдельная ка­тушка для возбуждения элек­тромагнитов. Машина Ледда состояла из двух плоских электромаг­нитов, между концами кото­рых вращались два якоря Сименса. Один из якорей давал ток для питания элек­тромагнитов, а другой — для внешней цепи. Слабый остаточный магнетизм сердечников электромагнитов сначала возбуждал очень слабый ток в арматуре первого якоря; этот ток обегал электромагниты и усиливал уже имеющееся в них магнитное состояние. Вследствие этого усиливался в свою очередь ток в арматуре, а последний ещё более увеличивал силу электромагнитов. Мало помалу такое взаимное усиление шло до тех пор, пока электромагни­ты не приобретали полной сво­ей силы. Тогда можно было привести в движение вторую арматуру и получить от нее ток для внешней цепи.

Следующий шаг в совер­шенствовании динамо-машины был сделан в том направлении, что совершенно устранили од­ну из арматур и воспользова­лись другой не только для возбуждения электромагни­тов, но и для получения тока во внешней цепи. Для этого нужно было только провести ток из арматуры в обмотку электромагнита, рассчитав все так, чтобы последний мог достичь полной своей силы и направить тот же ток во внешнюю цепь. Но при таком упрощении конструкции якорь Сименса оказывался непригодным, так как при бы­строй перемене полярностей, в якоре возбуждались сильные паразитические токи, железо сердечников быстро разогре­валось, и это могло при боль­ших токах привести к порче всей машины. Необходима была другая форма якоря, бо­лее соответствовавшая новому режиму работы.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее