FUUSIKA4 (Биофизика)

2016-08-01СтудИзба

Описание файла

Документ из архива "Биофизика", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "FUUSIKA4"

Текст из документа "FUUSIKA4"

Molekulide moodustumine – kovalentne side aatomite vahel.

Orbitaalil üksi asuv elektron omab magnetmomenti ja püüab paarduda teise, vastassunalise spinniga elektroniga, nii nagu kaks pulkmagnetit tõmbuvad kui põhja- ja lõunapoolused satuvad vastatstikku. Seetõttu on keemiliste elementide aatomid ja ka molekulid, mille koosseisus on paardumata elektrone, keemiliselt aktiivsed ja neid nimetatakse radikaalideks. Kui lähedal juhtub olma teine aatom, millel vaba elektron on vastasmärgilise spinniga, võiksid need kaks elektroni põhimõtteliselt paari moodustada, kuid selleks peavad nad enne teineteisele küllat ligidale saama. Probleem on selles, et dipoolsed magnetid (kahepooluselised) magnetid tõmbuvad piisavalt tugevasti ainult väikeselt kauguselt, välised elektronid aga tõukuvad omavahel juba suurelt kauguselt. Seetõttu molekuli moodustumiseks peavad elektronkatted alguses lähenedes isegi teatud määral tõukejõudude poolt moonutatud saama, enne kui tõmbuvad jõud piisava tugevuse saavutavad. Molekuli moodustumine on kvantmehaaniliselt väga keerukas protsess ja vastavaid lainevõrrandeid täpselt lahendada ei ole niikuinii võimalik. Näiteks on niisuguses kahe paardunud elektroni lainefunktsioonis elektroni maksimaalne tõenäosustihedus otse tuumade vahel. Seega, lisaks spinnide kui magnetite vastastikusele tõmbele on oluline veel mõlema tuuma tõmme nende vahel asuva elektroni suhtes. Meie kursuse piires on piisav mõista, et keemilise sideme kahe aatomi vahel saavad moodustada ainult kaks paardumata elektroni, millel on vastassuunalised spinnid, ja paardunud elektronidest tingitud tugev aatomitevaheline tõmme on mõjus ainult väikestel kaugustel.

Vaatleme molekuli moodustumist energeetilisest aspektist. Kui kaks aatomit asuvad kaugel, võib nende omavahelise mõju potentsiaalse energia lugeda nulliks (mõju ei ole). Lähenedes hakkab tunda andma kõigepealt väliste elektronide omavaheline tõukumine. Seda tõukejõudu ületades potentsiaalne energia suureneb, muutudes positiivseks. Potentsiaalse energia suurnemine toimub loomulikult kineetilise energia vähenemise arvel, s.t. molekulid lähenevad inersi tõttu ja lähenedes kiirus aeglustub. Kui algkiirus oli küllalt suur võivad elektronid üksteisele nii lähedale sattuda (potentsiaalne energia saavutab maksimumi), et antiparalleelsete spinnidega elektronide tõmme hakkab domineerima Seevastu elektronpilvede tõukumine isegi väheneb, sest elektronid asuvad nagu üksteise sees, orbitaalid osaliselt kattuvad. Tõmbejõu sfääris hakkab potentsiaalne energia uuesti kahanema, kineetiline seevastu aga suurenema. Tuumade teatud omavahelise kauguse puhul saabub potentsiaalse energia miinimum, aga muidugi uuesti kineetilise energia maksimum. Kui selles seisus aatomipaar energiat ära ei anna, siis stabiilset molekuli ei moodustu. Põrgates naabermolekuliga või energiakvanti kiirates saab ülearusest energiat vabaneda ja siis stabiliseerub potentsiaalse energia miinimumi seisund. Pange tähele, et vabanenud energia muutub just kogu molekuli energiaks, mitte uuesti nendesamade aatomite kineetiliseks energiaks, mis reaktsiooni astusid. Reageerivad aatomid on oma kineetilise energia abil ületanud nn. aktivatsioonienergia barjääri ja moodustanud stabiilse molekuli, vabanedes seejuures ülearusest energiast. Uus energiamiinimum, mis vastab molekuli olekule, võib olla kas madalam või kõrgem kui aatomite esialgne potentsiaalse energia nivoo (null). Kui lõppnivoo on madalamal kui algnivoo, siis selles reaktsioonis vabanes energiat (ka see muutus molekulide liikumise energiaks, soojuseks). Kui lõppnivoo on kõrgem kui algnivoo, siis reaktsioonis kokkuvõttes neeldus kineetilist energiat, s.t. osa aatomite kineetilisest energiast ei muutunud mitte molekulide kineetiliseks energiaks, vaid jäi molekulisiseseks potentsiaalseks energiaks. Niisuguse reaktsiooni tulemusena segu jahtub, molekulide kineetiline energia väheneb.

Ülaltoodud mudel ei kehti mitte üksne molekuli moodudstumise puhul aatomitest vaid ka teiste keemiliste reaktsioonide puhul, mis toimuvad molekulide vahel ja mille tulemusena moodustuvad teised molekulid. Molekulide moodustumise puhul aatomitest on molekuli potentsiaalne energia tavaliselt negatiivsem kui reageerivate aatomite oma (energiat vabaneb). Molekulidevaheliste reaktsioonide puhul esineb nii negatiivsemat kui positiivsemat lõppseisundit.

Paarduda ja kovalentseid sidemeid moodustada võivad omavahel nii erinevate aatomite s-p ja d-elektronid kui ka s, p, ja d elektronid kombinatsioonides. Vastavalt paarduvate elektronide orbitaali kujule võivad sidemed kujuneda erineva pikkusega ja erinevate nurkade all. Lihtsaim juht, kui paarduvad kaks s-elektroni, annab tulemusena hantlikujulise molekuli, kus kaks kerakujulist orbitaali on osaliselt ühinenud (Joonis). s-elektronide paardumisel moodustun nn. -side, millel ei ole kindlat suunda. p-elektronidel on kaheksakujulised orbitaalid ja need võivad s-elektroniga paarduda otstest. Sel juhul on -side kaheksakujulise p-orbitaali otsa pikenduseks, suund on määratud p-orbitaali poolt. p-orbitaalid võivad omavahel paarduda kahel viisil, kas ka otstest (sel juhul on sideme nimetuseks ikkagi -side), või külgedelt. Viimasel juhul kutsutakse sidet -sidemeks. -sideme oluline omadus on see, et ta ei lase sidet moodustavaid aatomeid omavahel pöörelda, kuna side seda lubab. -sideme näiteks s- ja p-orbitaali vahel toome vee molekuli, kus s-orbitaaliga vesiniku elektron on paardunud p-orbitaaliga hapniku elektroniga (joonis). -sidemete näiteks toome lämmastiku molekuli, milles N aatomites on kolm omavahel risti olevat paardumata p-orbitaali. Üks neist paardub teise N aatomi p-elektroniga -sideme abil, kuna kaks paarduvad -sidemete kaudu, moodustades nii kolmekordse sidemega seotud (väga stabiilse, raskesti lõhutava) molekuli.

Võimalike kovalents-sidemete arv aatomis (aatomi võimalik valents).

Aatomite põhiseisundis (madalaimal energiatasemel) on nende kovalents võrdne paardumata elektronide arvuga, mis oleks

H: 1

He: 0

Li: 1

Be: 0

B: 1

C: 2

N: 3

O: 2

F: 1

Ne: 0

Tegelikult aga ei ole valentssidemete arv alati niisugune ja võib olla isegi muutlik sõltuvalt ühenditest. See tuleneb asjaolust, et 2s elektronpaar ei ole mitte väga tugevasti omavahel seotud ja termiline energia on juba võimeline seda sidet lõhkuma, viies ühe 2s elektronidest üle 2p seisundisse. Selle tulemusena on näiteks Be ja ka Ca tavaliselt kahevalentsed, kuigi mõlemad sisaldavad põhiseisundis 2s paari ja mitte ühtegi p-elektroni. Sama lugu on süsinikuga: see peaks teoretiliselt olema kahevalentne (2s paar ja kaks paardumata 2p elektroni), kuid on peaaegu kõigis ühendites, seljuures kõigis orgaanilistes hendites neljavalentne. Üks 2s elektronidest ergastub kolmandale vabale 2p orbitaalile ja kõik neli teise nivoo elektroni osutuvad mittepaardunuiks. Kui niisugusest ergastusseisundist kiiresti moodustuvad valentssidemed, nii et lisandunud tekkinud sidemetest vabaneb rohkem energiat kui kulus ergastusele, siis on niisugune vahepealse ergastuse kaudu moodustunud neljavalentne lõppseisund energeetiliselt madalalmal tasemel kui ergastumata seisundist moodustunud kahevalentne lõppseisund. Kuna valentssidemete moodustumisel vabanenud energia võib olla mitmesugune sõltuvalt moodustunus ühenditest, siis ei ole ka aatomi valents mingi kindel suurus. Küll aga on kindlam suurus maksimaalne võimalik valents, mis on määratud antud peakvantarvule n vastavate s ja p-nivoode üldhulgaga, eeldades, et teatud ergastusseisundites võivad need kõik olla asustatud paardumata elektroniga. Niisiis oleks teise perioodi elementide maksimaalne valents 4 (1 s ja 3p orbitaali) ja kolmanda perioodi elementidel 6 (1 s ja 5 p-orbitaali). Kahjuks tekib ka siin erandeid juhtudel kus kõrgema n väärusega s-orbitaalid on energeetiliselt madalamad kui uhe võrra madalama n-ga d orbitaalid.

Doonor-aktseptorside. Valents-sideme polariseeritus. Vesinikside.

Siiani oleme eeldanud, et kovalents-sideme moodustavad paardudes elektronid, millest üks kuulub ühele ja teine teisele aatomile. Kvantmehaanika lainevõrrandid aga ei tunnusta elektroni ‘kuuluvust’ vaid ainult tema kvantarve (energiaseisundeid). Seetõttu on peaaegu samaväärselt tõenäone juht, kus ühe aatomi elektronpaar moodustab sideme kasutades teise aatomi tühja orbitaali. Tähtis on ainult, et kuuludes kahele aatomile korraga omaks see paar madalamat energiat kui kuuludes ainult ühele aatomile. Niimoodi moodustuvad nn. koordinatsioonilised -sidemed, mis kasutavad näiteks Fe aatomi vabu d-orbitaale, et fikseerida seda aatomit erilises valkstruktuuris, nn. tsütokroomis, kus ta osaleb elektroni ülekandjana. Tsütokroomidel on bioenergeetikas esmajärguline roll.

Kui elektronpaar on moodustanud valents-sideme ja kuulub seega kahele aatomile korraga, siis see ei tähenda sugugi, et elektronid kuuluvad kummalegi aatomile võrdselt. Aatomitel on omadus tõmmata kogu paari suuremal või vähemal määral omaenda orbitaalile, jättes naabri orbitaali vastavalt tühjemaks. Selle tulemusena omandab eltronpaari tõmbav aatom negatiivsema kogulaengu kui tema partner ja seda omadust iseloomustatakse aatomi elektronegatiivsusena. Hapnik on üks elektronegatiivsemaid elemente (Tabel), seega ühendites tõmbab ta elektronpaari tugevasti enesele, jättes partneri orbiidi osa aega tühjaks. Niimoodi kovalentne side polariseerub. Polariseerumise äärmuslikuks väljenduseks on nn. ioonside, kus üks aatom on elektroni täielikult teisele üle andnud. Tüüpilised ioonsidemega seotud ühendid on leelismetallide soolad, nagu NaCl, kus Na on kaotanud elektroni ja muutunud positiivseks iooiks, Cl aga liitnud elektroni ja muutunud negatiivseks iooniks.

Kovalents-sideme polariseerituse ja doonor-aktseptor-sideme kombinatsioon on bioloogias ülitähtis vesinikside. Vesinikside moodustub positiivse osalaenguga aatomi vabaksjäänud orbitaali ja mingi teise aatomi olemasoleva elektronpaari kaudu. Näiteks vees on positiivse osalaenguga aatomiks vesinik, millelt hapnik on elektroni osaliselt ära tõmmanud, ja millel seetõttu 1s orbitaal on osa aega elektroniga asustamata. Mingi vee molekuli hapnikuaatomi 2s või 2p elektronpaar võib moodustada doonor-aktseptorsideme teise vee molekuli vesiniku osaliselt vaba orbitaali kasutades ajal mil see on vaba. Niimoodi saavad tekkida kovalentse iseloomuga sidemed erinevate vee molekulide vahel, mis neid seovad. Tulemusena on vesi vedelas olekus looduslikel temperatuuridel samal ajal kui tema analoog H2S on gaasiline. Vee juurde pöördume tagasi vedelike vaatlemisel. Teiste vesiniksidemete näidetena bioloogias on valgu sekundaarstruktuuri kujundavad vesiniksidemed ja DNA kaksikspiraali kujundavad vesiniksidemed.

Orbitaalide hübridisatsioon

Nagu öeldud, on süsinik tüüpiliselt neljavalentne, sest üks tema 2s elektronidest ergastub 2p nivoole ja tekib neli paardumata elektroni, kolm 2p nivool ja üks 2s nivool. Nende orbitaalid peaksid olema erineva kujuga, mistõttu ka koos süsinikuga tekkinud molekulid ei tohiks olla sümmeetrilised. Vaadeldes aga tüüpilist süsinikühendit metaani (CH4) on leitud, et kõik neli H aatomit on täiesti identse energiaga seotud ja paigutatud sümmeetriliselt tetraeedri (ruumilise nelitahuka) tippudesse. Seega peavad kõik neli orbitaali olema täiesti sarnase kujuga. See on fakt, mis otse ei tulene kvantmehaanilisest teooriast ja millele tuli otsida seletust, püüdes leida loogilisi võimalusi erinevate orbitaalide kombineerumiseks. Leitigi võimalus, et uued sümmeetrilised orbitaalid on kõik sarnased kombinatsioonid nelja erineva orbitaali lainefunktsioonidest, erinevused on ainult selles, missugused p-orbitaali funktsioonid liidetakse ja missugune lahutatakse (s-orbitaal on summas alati positiivselt). Sisuliselt tähendab see, nagu erinevate orbitaalide lainetused liituksid ja lahutuksid erinevates kombinatsioonides, kuid igas kombinatsioonis esinevad kõigi nelja orbitaali lainefunktsioonid. Niisugune orbitaalide hübridisatsiooninähtus on üsna sagedane ja isegi vee molekulis ei ole hapniku 2p orbitaalidega moodustunud s-sidemete vaheline nurk mitte 90° vaid 104.5°. See näitab, et hapniku kaks vesinikuga paardunud orbitaali ja kaks hapniku enese paari (2s ja 2p paarid) hübridiseeruvad kõik võrdseteks sarnase kujuga orbitaalideks mis suunduvad tsentrist tetraheedri nurkadesse, sarnaselt nagu metaani molekulis, kuid kahel puudub partner H-aatom. Selle tulemusena on doonor-aktseptor iseloomuga vesiniksidet võimelised moodustama kas elektronpaari, nii 2s kui 2p paarid. Nendest näidetest on näha, kuidas tekkiva ühendi sümmeetrilisus võimaldab saavutada ühendmolekuli kõige madalamat energiaseisundit, hoolimata sellest, et hapniku enese (samuti kui süsiniku) elektronstruktuur ei ole minimaalse energia seisundis. Teisest küljest tähendab see ka seda, et individuaalsete aatomite kvantmehaanilisi orbitaalide kujusid ei saa võtta aluseks keerukamate ühendite stereo-struktuuri arvutamisel, vaid määravaks jäävad keerulise molekuli struktuurist tulenevad energiaseisundid, mis on minimaalsed tavaliselt maksimaalse sümmeetriaga olekutes.

Resonants

Resonantsi olemuse selgitamiseks vaatleme lihtsat struktuuri, nitraatiooni NO3-(joonis). Selles esineb lämmastik neljavalentsena, olles saatnud ühe oma 2s elektronidest praktiliselt täielikult hapnikule ja vabastades nii maksimaalse koguse valents-sidemeid. Kuigi niimoodi tekkinud struktuur peaks olema ebasümmeetriline, on katsed näidanud, et kõikide O-aatomite seoseenergiad on võrdsed. See on võimalik kui kaksik- ja üksiksidemed on pidevas vaheldumises, nii et kaksiksidet ei saa lugeda kuuluvaks kindlale O-aatomile. Sarnane näide on ka bensooli molekul, kus niisugune kaksik- ja üksiksidemete vahelduvus katab pikema ringi, sidudes tervelt kuus C aatomit. Kvantmehaanilises käsitluses tähendab resonants-ringi või ka lineaarse resonants-ahela lainefunktsioon, sarnaselt hübridisatsiooniga, lineaarkombinatsiooni kõikidest osalevatest lainefunktsioonidest. Seejuures on resoneeruvad sidemed tunduvalt tugevamad kui ilma resonantsita. Samuti võib resoneeruva lainefunktsiooni ruumiline ulatus olla tunduvalt pikem kui ühel aatomil. Vastavalt pikeneb ka neelatava (kiirtava) elektromagnetilise kiirguse lainepikkus. Seetõttu on loodus kasutanud resoneeruvaid struktuure nähtavat valgust neelavate pigmendimolekulide ehitamiseks. Fotosünteesis kasutatavate pigmentide, klorofülli ka karotenoidide molekulides on kas ringstruktuuriga või lineaarsed reonants-ahelad ja need ained omavad neeldumisribasid nähtava valguse piirkonnas, samal ajal kui tavalised valgud, aminohapped ja enamik teisi bioloogilisi molekule neelavad ultravioletses piirkonnas.

Üleminekumetallide kompleksid

Üleminekumetallideks nimetatakse esimese suure perioodi (n=3) metalliliste omadustega aineid, millel järgmise perioodi (n=4) 4s nivool asub üks või kaks elektroni, kuid samal ajal on vabu orbitaale veel 3d nivool (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu). Neist bioloogias omavad elektroni edastajatena suurt tähtsust Mn, Fe, ja Cu. Bioloogilistes struktuurides on oluline, et aktiivsed aatomid, mis tegelikult osalevad metaboolsetes protsessides, oleksid kinnstatud ja asuksid vajalikul kaugusel ja vajalikus asendis oma metaboolsete partnerite suhtes, millega neil tuleb suhelda näiteks elektrone vastu võttes ja edasi andes või mõnel muul moel. Valkstruktuurid täidavadki seda ülesannet, et kinnistavad metaboolselt aktiivsed aatomid vajalikesse asukohtadesse. Loomulikult ei saa valkudega seotus välistada aatomite termilist võnkumist ümber keskasendi, kuid välistab pöörlemise ja kindlasti translatoorse liikumise. Aatomite kinnistamiseks saab kasutada kovalentseid sidemeid, mida peab aga olema piisaval hulgal, et takistada liikumist kõikides suundades, jättes samal ajal mõned valentsid vabaks ka metaboolse aktiivsuse tarbeks. Nendele tingimustele vastavadki kolmanda perioodi üleminekumetallid, millel on piisavalt täidetud või täitmata d-orbitaale (kokku viis), et aatomit kinnistada. Seejuures sidemete sümmeetria kindlustatakse s, p ja d-orbitaalide hübridisatsiooniga. Tabelis toome mõned andmed bioloogiliselt oluliste aatomite jaoks.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5168
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее