kursovik (Физические свойства вакуумно-плазменных покрытий для режущего инструмента), страница 2

2016-08-01СтудИзба

Описание файла

Документ из архива "Физические свойства вакуумно-плазменных покрытий для режущего инструмента", который расположен в категории "". Всё это находится в предмете "технология" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "технология" в общих файлах.

Онлайн просмотр документа "kursovik"

Текст 2 страницы из документа "kursovik"

Возможны два метода ионного распыления: ионно-лучевое и плазмоионное распыление. При ионно-лучевом распылении выбивание атомов мишени происходит под действием бомбардировки ее поверхности ионными лучами определенной энергии (Рис.1). Тут не требуется подача на мишень отрицательного потенциала.

При плазменном распылении мишень из распыляемого материала находится в сильно ионизированной плазме под отрицательным потенциалом и играет роль катода. Положительные ионы под действием электрического поля вытягиваются и бомбардируют мишень, вызывая ее распыление.

Существуют следующие разновидности плазменного распыления: катодное, магнетронное, высокочастотное и в несамостоятельном газовом разряде.

Катодное распыление. Принципиальная схема установки приведена на рис. 2. Метод осуществляется следующим образом.

Вакуумный объем, содержащий анод и катод, откачивается до давления 10-4 Па, после чего производится напуск инертного газа (обычно это Ar при давлении 1-10 Па). Для зажигания тлеющего разряда между катодом и анодом подается высокое напряжение 1-10 кВ. Положительные ионы инертного газа, источником которого является плазма тлеющего разряда, ускоряются в электрическом поле и бомбардируют катод, вызывая его распыление. Распыленные атомы попадают на подложку и оседают в виде тонкой пленки.

Данный метод распыления может быть осуществлен и по другой схеме – диодной схеме распыления, отличительным признаком которой является то, что при распылении катод является как источником распыляемого материала, так и источником электронов, поддерживающих разряд, анод также принимает участие в создании заряда, одновременно являясь подложкодержателем.

Преимущества метода катодного распыления в следующем:

  • безынерционность процесса

  • низкие температуры процесса

  • в

    озможность получения пленок тугоплавких металлов и сплавов (в том числе и многокомпонентных)

  • сохранение стехиометрического исходного материала при напылении

  • возможность получения равномерных по толщине пленок

Метод имеет недостатки:

  • низкая скорость осаждения (0.3-1 нм/с)

  • загрязнение пленок рабочим газом вследствие проведения процесса при высоких давлениях

  • низкая степень ионизации осаждаемого вещества

Магнетронное распыление. Является разновидностью метода нанесения тонких пленок на основе тлеющего разряда. Магнетронные системы ионного распыления относятся к системам распыления диодного типа, в которых атомы распыляемого материала удаляются с поверхности мишени при ее бомбардировке ионами рабочего газа (обычно Ar), образующимися в плазме аномального тлеющего разряда.

В магнетронной распылительной системе катод (мишень) помещается в скрещенное электрическое (между катодом и анодом) и магнитное поле, создаваемое магнитной системой. Магнитное поле позволяет локализовать плазму аномального тлеющего разряда непосредственно у мишени.

Суть метода состоит в следующем (Рис.3), в систему анод-катод подается постоянный электрический ток (2-5 А), который приводит к возникновению между мишенью (отрицательный потенциал) и анодом (положительный или нулевой потенциал) неоднородного электрического поля и возбуждению аномального тлеющего разряда. Электроны, выбитые из катода под действием ионной бомбардировки, подвергаются воздействию магнитного поля, возвращающего их на катод, с одной стороны, с другой – поверхностью мишени, отталкивающей электроны. Это приводит к тому, что электроны совершают сложное циклическое движение у поверхности катода. При движении электроны многократно сталкиваются с атомами аргона, обеспечивая высокую степень ионизации, что приводит к возрастанию интенсивности ионной бомбардировки мишени, а следовательно и к возрастанию скорости распыления.

Преимущества метода:

  • высокая скорость распыления при низких рабочих напряжениях (600-800 В) и при небольших давлениях рабочего газа (510-1 -10 Па)

  • отсутствие перегрева подложки

  • малая степень загрязнения пленок

  • возможность получения равномерных по толщине пленок на большей площади подложек

Высокочастотное распыление. Данный метод применяется в том случае, если материалом мишени является диэлектрик. Для распыления диэлектрика необходимо периодически нейтрализовать положительный заряд на нем. Для этого к металлической пластине, расположенной непосредственно за распыляемой диэлектрической мишенью, прикладывают напряжение с частотой 1-20 МГц.

Плазменное распыление в несамостоятельном разряде. В распылительных системах данного типа горение газового разряда поддерживается дополнительным источником (магнитное поле, высокочастотное поле).

Преимущества метод РИБ:

  • сохранение стехиометрического состава пленок при распылении многокомпонентных сплавов

  • высокий коэффициент использования распыляемого вещества

  • возможность получения равномерных по толщине покрытий на подложке большей площади

  • высокая адгезия пленок

Сущность МТИ состоит в том, что в специальных испарителях вещество нагревают до температуры, при которой начинается заметный процесс испарения.

Все испарители отличаются между собой в зависимости от способа нагрева испаряемого вещества: резистивного, индукционного, электродугового и др.

Резистивное испарение. Тут тепловую энергию для нагрева вещества получают за счет выделения теплоты при прохождении тока через нагреватель.

Электродуговое испарение. Нагрев катода с последующей эмиссией электронов, осуществляется по средствам зажигания в вакуумной камере электродуги (Рис.4). Особенностью данного метода является то, что электрический ток, создающий дугу, подается в цепь, содержащую катод (отрицательный потенциал) и корпус вакуумной камеры (положительный потенциал). Электрическая дуга производит локальный разогрев поверхности катода, в результате чего последняя, переходя в жидкостную фазу, и в виде капель распространяется по объему вакуумной камеры. Капельная фаза приводит к неоднородности химического состава покрытия. Для уменьшения брызгового эффекта производится тщательная предварительная дегазация катода.

Преимущества метода нанесения тонких пленок вакуумным электродуговым методом:

  • возможность регулирования скорости нанесения покрытия путем изменения силы тока дуги

  • возможность управлять составом покрытия, используя одновременно несколько катодов или один многокомпонентный катод

  • высокая адгезия покрытий

  • возможность получения тонких пленок металлов, вводя в камеру реакционный газ

Основные преимущества МТИ в следующем:

  • возможность нанесения пленок металлов (в том числе тугоплавких), сплавов, полупроводниковых соединений и диэлектрических пленок

  • простота реализации

  • высокая скорость испарения вещества и возможность регулирования ее в широких пределах за счет изменения подводимой к испарению мощности

  • возможность получения покрытий, практически свободных от загрязнения

Методы ФОП, несмотря на некоторые присущие им недостатки (например, невозможность осаждения покрытий в больших углублениях и сложность нагрева подложки в вакууме), в целом наиболее перспективны для нанесения износостойких покрытий на режущие инструменты. Связано это, во-первых, с возможностью точного регулирования технологических процессов и их полной автоматизации. Во-вторых, низкая температура процесса позволяет обрабатывать любые инструментальные материалы и при этом достигать высокой адгезии покрытия с основой. В-третьих, высокая скорость формирования покрытия. И, наконец, метод ФОП безопасен для окружающей среды и экономически выгоден [6].

6. Классификация износостойких покрытий для режущего инструмента.

6.1. Основные положения.

Все элементы Периодической системы подразделяются на группы электронных аналогов, атомы которых имеют аналогичные строения электронных оболочек:

  • s-элементы, имеющие полностью заполненные внешние s-оболочки

  • d- и f-элементы, имеющие незаполненные d- и f-оболочки

  • sp-элементы, имеющие валентные s,p-электроны (неметаллы)

Данной классификация поясняет деление всех тугоплавких соединений, применяемых в качестве покрытий, на три группы:

  • металлоподобные тугоплавкие соединения, образуемые d- и f-переходными металлами (бориды, карбиды, нитриды)

  • металлоподобные тугоплавкие соединения, образуемые между собой в основном d- и f-переходными металлами, а также вырожденными металлами из sp-групп электронных аналогов

  • неметаллические тугоплавкие соединения, образуемые взаимным сочетанием неметаллов (оксиды)

Наиболее широко в качестве износостойких покрытий применяются соединения тугоплавких d-переходных металлов IV-VI Периодической системы элементов с кислородом, углеродом и азотом [5]. Это связано с особенностями их кристаллохимического строения:

  • Во-первых, эти металлы имеют недостаток электронов на внутренних s, p и d орбиталях, и это приводит к тому, что они с достаточной легкостью могут приобретать электроны из любого источника, которым может служить междоузельные атомы углерода, азота и кислорода.

  • Во-вторых, большинство переходных металлов имеют достаточно большие атомные радиусы и при образовании соединений с атомами C,N и O могут подчинятся правилу Хэгга, согласно которому отношение радиуса атома неметалла к радиусу атома металла меньше критического значения 0.59. Для соединений металлов IV группы (Ti,Zr,Hf) достаточно точно выдерживается правило Хэгга, что приводит к образованию простых структур, в которых превалирует связь металл-металл, а атомы C,H,O можно рассматривать как вставленные в решетку атомов металла.

  • В-третьих, большинство переходных металлов имеют широкие области гомогенности, что позволяет в зависимости от содержания кислорода, азота и углерода достаточно сильно изменять физико-механические свойства их карбидов, нитридов и оксидов.

  • В-четвертых, переходные металлы и некоторые их соединения, в первую очередь соединения с простой кубической структурой типа NaCl (ZrC,ZrN,TiN,VC,TaC), отличаются очень высокими температурами плавления.

Соединения металлов IV-VI групп с кислородом, углеродом и азотом можно рассматривать и как наиболее устойчивый (в термодинамическом отношении) материал для покрытий, способный противостоять твердо- и жидкофазным диффузионным реакциям, коррозии и окислению при высоких температурах. Ниже будет показано, что свойства соединений тугоплавких металлов с О,N и С при обычных и повышенных температурах сильно зависят от многих факторов: состава (стехиометрии), наличия примесей, микроструктуры и текстуры, пористости и т.д.

6.2. Одноэлементные, однослойные покрытия.

6.2.1. Соединения, используемые в качестве покрытий.

Карбиды. Карбиды обладают рядом противоречивых свойств, что осложняет детальное изучение их физической природы. В частности, строение монокарбидов с кубической решеткой соответствует структуре типа NaCl , вместе с тем электропроводность карбидов сравнима с электропроводностью металлов. Высокая твердость карбидов проявляется за счет ковалентной связи атома углерода с атомом метала.

Наибольшая склонность к образованию энергетически стабильных конфигураций sp3 проявляются у карбидов металлов IV группы (Ti, Zr, Hf ). Это обусловлено большей донорской способностью этих металлов (особенно Ti) при относительно высоком содержании углерода в карбиде (до 20%). Стабильные конфигурации карбидов атомов металлов IV группы объясняется уменьшением общего числа нелокализованных электронов sp-переходов, смещения равновесия вправо и уменьшения общего числа нелокализованных электронов: sp2 + p  sp3. Поэтому карбиды обладают повышенной жесткостью кристаллической решетки, определяющей их высокую твердость, теплостойкость и хрупкость [5].

При переходе к карбидам V группы донорская способность металлов этой группы снижается, что приводит к снижению статистического веса устойчивости sp3-конфигурации карбидов и соответственно уменьшает соответственно твердость этих карбидов. Область их гомогенности сужается, в составе наряду с карбидами МС образуются низшие карбиды М2С с гексагональной структурой. Так например, твердость TiC равна 31.7 ГПа, а твердость TaC – 17.4 ГПа, Nb2C – 21 Гпа [5].

У карбидов тугоплавких металлов VI группы (Cr, Mo,W) содержание углерода падает до 6%, снижается число обобществленных электронов, поэтому статический вес атомов наиболее стабильной электронной конфигурации sp3 оказывается очень низким, а свойства карбидов определяются главным образом свойствами d5-конфигурации. Связи d5 более гибкие, чем sp3, допускают упругий прогиб решетки, более свободное движение в ней дислокаций. Поэтому карбиды металлов VI группы имеют меньшую твердость и хрупкость (CrC, MoC, WC), чем твердость и хрупкость карбидов IV группы (TiC, ZrC, HfC). Так твердость CrC равна 29.5 ГПа, а твердость ZrC – 29.5 ГПа [5] . Карбиды тугоплавких металлов V группы занимают промежуточное положение.

У карбидов VI группы имеются узкие области гомогенности. Образование карбидов таких металлов связано с сильными искажениями кристаллической решетки металла (Cr) либо с нарушением порядка упаковки (Mo, W). В следствии этого, у карбидов VI могут возникать и прямые связи C-C (MoC, CrC) [5].

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее