Texts on physics, maths and programming (Несколько текстов для зачёта), страница 6

2015-12-04СтудИзба

Описание файла

Файл "Texts on physics, maths and programming" внутри архива находится в папке "3". Документ из архива "Несколько текстов для зачёта", который расположен в категории "". Всё это находится в предмете "английский язык" из 5 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "английский язык" в общих файлах.

Онлайн просмотр документа "Texts on physics, maths and programming"

Текст 6 страницы из документа "Texts on physics, maths and programming"

(2.19)

(2.20)

(2.21)

etc. These solutions give the convenient normalization convention at q = 0,

S(0)=0

and

e-S(0)=1.

(2.22)

Remarks:

(i) As an example, consider an N-dimensional harmonic oscillator with

(2.23)

From (2.2), one sees that the Hamilton–Jacobi equation (2.9) is for a particle moving in a potential given by

(2.24)

Thus, for any point q ≠ 0 the classical trajectory of interest is simply a straight line connecting the origin and the specific point, with the action

(2.25)

The corresponding energy is, in accordance with (2.10),

(2.26)

By using (2.8), one can readily show that E1 = E2 =   = 0 and S1 = S2 =   = 0. The result is the well-known exact answer with the ground state wave function for the Schroedinger equation (2.4) given by

(2.27)

and the corresponding energy

(2.28)

(ii) From this example, it is clear that the above expression Figs. (2.6), (2.7) and (2.8) is not the well-known WKB method. The new formalism uses −v (q) as the potential for the Hamilton–Jacobi equation, and its “classical” trajectory carries a 0+ energy; consequently, unlike the WKB method, there is no turning point along the classical trajectory, and the formalism is applicable to arbitrary dimensions.

2.2. Trial function for the quantum double-well potential

To illustrate how to construct a trial function, consider the quartic potential in one dimension with degenerate minima:

(2.29)

An alternative form of the same problem can be obtained by setting so that the Hamiltonian becomes

(2.30)

where

(2.31)

This shows that the dimensionless (small) expansion parameter is related to ; as it turns out, the relevant parameter is its square. In the following, we shall take a = 1 so that the expansion parameter is 1/g; in the literature [5], [6], [7], [8], [9], [10], [11], [12], [13] and [14] one often finds the assumption 2ga = 1 (placing the second minimum of the potential at q = 1/g) so that reduces to g and the anharmonic potential appears as (1/2)q2 (1−gq)2. Then g appears with positive powers instead of negative, but the coefficients of the power series are the same as with our form of the potential, apart from the overall factor 2ga.

For the above potential (2.29), the Schroedinger equation (2.4) is (with a = 1)

(2.32)

where, as before, ψ (x) = egS (x) is the ground state wave function and E its energy. Using the expansions Figs. (2.6) and (2.7) and following the steps Figs. (2.8) and (2.10), and Figs. (2.15), (2.16), (2.17), (2.18), (2.19), (2.20) and (2.21), we find the well-known perturbative series

(2.33)

and

(2.34)

Both expansions S = S0 + g−1S1 + g−2S2 +  and E = gE0 + E1 + g−1E2 +  are divergent, furthermore, at x = −1 and for n   1, each Sn (x) is infinite. The reflection x → −x gives a corresponding asymptotic expansion Sn (x) → Sn (−x), in which each Sn (−x) is regular at x = −1, but singular at x = +1. We note that for g large, the first few terms of the perturbative series (with (2.33) for x positive and the corresponding expansion Sn (x) → Sn (−x) for x negative) give a fairly good description of the true wave function ψ (x) whenever ψ (x) is large (i.e., for x near ±1). However, for x near zero, when ψ (x) is exponentially small, the perturbative series becomes totally unreliable. This suggests the use of first few terms of the perturbative series for regions whenever ψ (x) is expected to be large. In regions where ψ (x) is exponentially small, simple interpolations by hand may already be adequate for a trial function, as we shall see. Since the quartic potential (2.29) is even in x, so is the ground state wave function; likewise, we require the trial function  (x) also to satisfy  (x) =   (−x). At x = 0, we require

(2.35)

To construct  (x), we start with the first two functions S0 (x) and S1 (x) in (2.33). Introduce, for x   0,

(2.36)

and

(2.37)

In order to satisfy (2.35), we define

(2.38)

Thus, by construct ′ (0) = 0,  (x) is continuous everywhere, for x from −∞ to ∞, and so is its derivative.

By differentiating + (x) and  (x), we see that they satisfy

(T+V+u) +=g +

(2.39)

and

(T+V+w) =g ,

(2.40)

where

(2.41)

and

w(x)=w(-x)

(2.42)

with, for x   0

(2.43)

where

(2.44)

Note that for g > 1,  (x) is positive, and has a discontinuity at x = 1. Furthermore, for x positive both u (x) and  (x) are decreasing functions of x. Therefore, w (x) also satisfies for x > 0,

w(x)<0,

(2.45)

a property that is very useful in our proof of convergence which will be discussed in the next section.

3. Hierarchy theorem and its generalization

In this section, we restrict our discussions to a one-dimensional problem, in which the potential V (x) is an even function of x, as in the example given in Section 2.2. The Schroedinger equation (1.9) becomes

(3.1)

with ψ (x) as its ground state wave function, E the ground state energy, and ′ denoting , as before. For the one-dimensional problem, the trial function  (x) satisfies

(3.2)

as in (1.11); therefore (3.1) can be written as

(3.3)

in which

U(x)=V(x)+w(x)

(3.4)

and

(3.5)

as before. Throughout this section, we assume

(3.6)

hence, we need only to consider

x 0.

(3.7)

Furthermore, as in the example of the symmetric quartic double-well potential given in Section 2.2, we assume w (x) to satisfy

(3.8)

and

w()=0.

(3.9)

Therefore, w (x) is positive for x positive. Otherwise, the shape of w (x) can be arbitrary. The Schroedinger equation (3.1) will be solved through the iterative steps Figs. (1.34), (1.35), (1.36), (1.37), (1.38), (1.39), (1.40), (1.41), (1.42) and (1.43), using the sequences

(3.10)

for the energy difference , and the sequence

f1(x),f2(x),…,fn(x),…

(3.11)

for the ratio f (x) = ψ (x)/  (x) with, for n = 0,

f0(x)=1.

(3.12)

In this section, we differentiate two sets of sequences, labeled A and B, satisfying different boundary conditions:

or

Thus, in accordance with Figs. (1.42) and (1.43), we have in Case (A)

(3.13A)

whereas in Case (B)

(3.13B)

In both cases, is determined by the corresponding fn − 1 (x) through Figs. (1.38) and (1.40); i.e.,

(3.14)

in which [F] of any function F (x) is defined to be

(3.15)

Eqs. Figs. (1.35) and (1.37) give

(3.16)

Likewise, Figs. (1.38) and (1.39) lead to

(3.17)

which, on account of (1.40), is identical to

(3.18)

These two expressions of Dn (x) are valid for both Cases (A) and (B). Let xn be defined by

(3.19)

Since w′ (x) < 0, (3.19) has one and only one solution, with negative for x > xn and positive for x < xn. Thus, if

fn-1(x)>0

(3.20)

for all x > 0, we have from Figs. (3.17) and (3.18)

Dn(x)>0

(3.21)

and therefore, on account of (3.16),

(3.22)

In terms of the electrostatic analog introduced in Section 1, through Figs. (1.26), (1.27), (1.28) and (1.29), one can form a simple physical picture of these expressions. Represent Dn (x) by the standard flux of lines of force. Because the dielectric constant κ (x) =  2 (x) is zero at x = ∞, so is the displacement field. Hence, Dn (∞) = 0; therefore each line of force must terminate at a finite point. Since the electric charge density is , the total electric charge to the right of x is

It must also be the negative of the flux Dn (x) passing through the same point x: i.e.,

which gives (3.17). In the whole range from x = 0 to ∞, the total electric charge is zero; therefore, we have

Furthermore, at any point x > 0, the total charge from the origin to the point x is

which must also be the negative of the above Qn (x), and therefore the same as Dn (x); that leads to (3.18). From (3.19) and w′ (x) < 0, one sees that the charge distribution σn (x) is negative for x > xn, 0 at x = xn, and positive for 0 < x < xn. Correspondingly, moving from x = ∞ towards the left, the displacement field increases from Dn (∞) = 0 to Dn (x) > 0, reaching its maximum at x = xn, then as x further decreases, so does Dn (x), and finally reaches Dn (0) = 0 at x = 0. In Case (A), because of fn (∞) = 1, (3.22) leads to

fn(0)>fn(x)>fn()=1.

(3.23A)

Since for n = 0, f0 (x) = 1, Figs. (3.20) and (3.23A) are valid for n = 1; by induction these expressions also hold for all n; in Case (A), their validity imposes no restriction on the magnitude of w (x). In Case (B) we assume w (x) to be not too large, so that (3.13B) is consistent with

and therefore

fn(0)=1>fn(x)>fn()>0.

(3.23B)

As we shall see, these two boundary conditions (A) and (B) produce sequences that have very different behavior. Yet, they also share a number of common properties.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее