Texts on physics, maths and programming (Несколько текстов для зачёта), страница 5

2015-12-04СтудИзба

Описание файла

Файл "Texts on physics, maths and programming" внутри архива находится в папке "3". Документ из архива "Несколько текстов для зачёта", который расположен в категории "". Всё это находится в предмете "английский язык" из 5 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "английский язык" в общих файлах.

Онлайн просмотр документа "Texts on physics, maths and programming"

Текст 5 страницы из документа "Texts on physics, maths and programming"

From (1.36) and Dn (∞) = 0, we have

(1.39)

and, since σn (x) is even in x, we have from (1.29),

(1.40)

It follows then from (1.34) and Figs. (1.38), (1.39) and (1.40),

(1.41)

which lead to, through (1.35),

(1.42)

and

(1.43)

Consider first the case that w (x) in (1.38) is positive and satisfies

(1.44)

The hierarchy theorem that will be proved in Section 3 states that if w (x) satisfies (1.44) then the iterative solution of (1.42) with the boundary condition

(1.45)

gives a convergent monotonic sequence , where for all n,

(1.46)

and

(1.47)

likewise, the sequence f0 (x) = 1, f1 (x), f2 (x), … is also monotonic and convergent at any x   0 with

fn(x)>fn-1(x)

(1.48)

and

(1.49)

Furthermore, the convergence of Figs. (1.47) and (1.49) can hold for arbitrarily large but finite w (x). A result that is surprising, but pleasant.

On the other hand, if instead of (1.45), we impose a different boundary condition, one given by

(1.50)

then instead of (1.47), we have for all odd n = 2m + 1 an ascending sequence

(1.51)

however, for the even n = 2m series, we have a descending sequence

(1.52)

furthermore, between any even n = 2m and any odd n = 2l + 1, we have

(1.53)

Since according to (1.13), is the nth order iteration towards

(1.54)

each odd member in (1.51) gives an upper bound of E, whereas each even member in (1.52) leads to a lower bound of E. Both sequences approach the correct as n → ∞, one from above and the other from below. For the boundary condition (1.50), our proof of convergence requires a condition on the magnitude of w (x). Still this is quite a remarkable result.

In Section 2, we discuss the details of how to construct a good trial function  (q) for the N-dimensional problem. Section 3 gives the proof of the hierarchy theorem for the one-dimensional problem in which V (x) = V (−x) is an even function of x and the potential-difference function w (x) is assumed to satisfy (1.44); i.e., w′ (x) < 0 for x > 0. The extension to the asymmetric case V (x) ≠ V (−x) is discussed in Section 4. The hierarchy theorem is also applicable to Mathieu’s equation, which has infinite number of maxima and minima. In Appendix A, we give a soluble example in one dimension.

In dimensions greater than 1, at each iteration Eq. (1.21) gives a fine tuning of the energy, just like the one-dimensional problem. Hence, there are good reasons to expect our approach to yield convergent solutions in any higher dimension. In Section 5, we formulate an explicit conjecture to this effect. We describe an attempt to prove this conjecture by generalizing the steps used to prove the hierarchy theorem in one dimension. The attempt fails at present because the proof of one of the lemmas does not appear to generalize in higher dimension.

The present paper represents the synthesis and generalization of results, some of which have appeared in our earlier publications [1], [2], [3] and [4]. The function Dn introduced in this paper is identical to the function hn used in [4].

2. Construction of trial functions

2.1. A new formulation of perturbative expansion

In many problems of interest, perturbative expansion leads to asymptotic series, which is not the aim of this paper. Nevertheless, the first few terms of such an expansion could provide important insight to what a good trial function might be. For our purpose, a particularly convenient way is to follow the method developed in [1] and [2]. As we shall see, in this new method to each order of the perturbation, the wave function is always expressible in terms of a single line-integral in the N-dimensional coordinate space, which can be readily used for the construction of the trial wave function.

We begin with the Hamiltonian H in its standard form (1.7). Assume V (q) to be positive definite, and choose its minimum to be at q = 0, with

V(q) V(0)=0.

(2.1)

Introduce a scale factor g2 by writing

V(q)=g2v(q)

(2.2)

and correspondingly

ψ(q)=e-gS(q).

(2.3)

Thus, the Schroedinger equation (1.9) becomes

(2.4)

where, as before, q denotes q1q2, … , qN and the corresponding gradient operator. Hence S (q) satisfies

(2.5)

Considering the case of large g, we expand

S(q)=S0(q)+g-1S1(q)+g-2S2(q)+

(2.6)

and

E=gE0+E1+g-1E2+

(2.7)

Substituting Figs. (2.6) and (2.7) into (2.5) and equating the coefficients of gn on both sides, we find

(2.8)

etc. In this way, the second-order partial differential equation (2.5) is reduced to a series of first-order partial differential equations (2.8). The first of this set of equations can be written as

(2.9)

As noted in [1], this is precisely the Hamilton–Jacobi equation of a single particle with unit mass moving in a potential “−v (q)” in the N-dimensional q-space. Since q = 0 is the maximum of the classical potential energy function −v (q), for any point q ≠ 0 there is always a classical trajectory with a total energy 0+, which begins from q = 0 and ends at the other point q ≠ 0, with S0 (q) given by the corresponding classical action integral. Furthermore, S0 (q) increases along the direction of the trajectory, which can be extended beyond the selected point q ≠ 0, towards ∞. At infinity, it is easy to see that S0 (q) = ∞, and therefore the corresponding wave amplitude e-gS0(q) is zero. To solve the second equation in (2.8), we note that, in accordance with Figs. (2.1) and (2.2) at q = 0, . By requiring S1 (q) to be analytic at q = 0, we determine

(2.10)

It is convenient to consider the surface

S0(q)=constant;

(2.11)

its normal is along the corresponding classical trajectory passing through q. Characterize each classical trajectory by the S0-value along the trajectory and a set of N − 1 angular variables

α=(α1(q),α2(q),…,αN-1(q)),

(2.12)

so that each α determines one classical trajectory with

αj· S0=0,

(2.13)

where

j=1,2,…,N-1.

(2.14)

(As an example, we note that as q → 0, and therefore . Consider the ellipsoidal surface S0 = constant. For S0 sufficiently small, each classical trajectory is normal to this ellipsoidal surface. A convenient choice of α could be simply any N − 1 orthogonal parametric coordinates on the surface.) Each α designates one classical trajectory, and vice versa. Every (S0α) is mapped into a unique set (q1q2, … , qN) with S0   0 by construction. In what follows, we regard the points in the q-space as specified by the coordinates (S0α). Depending on the problem, the mapping (q1q2, … , qN) → (S0α) may or may not be one-to-one. We note that, for q near 0, different trajectories emanating from q = 0 have to go along different directions, and therefore must associate with different α. Later on, as S0 increases each different trajectory retains its initially different α-designation; consequently, using (S0α) as the primary coordinates, different trajectories never cross each other. The trouble-some complications of trajectory-crossing in q-space is automatically resolved by using (S0α) as coordinates. Keeping α fixed, the set of first-order partial differential equation can be further reduced to a set of first-order ordinary differential equation, which are readily solvable, as we shall see. Write

S1(q)=S1(S0,α),

(2.15)

the second line of (2.8) becomes

(2.16)

and leads to, besides (2.10), also

(2.17)

where the integration is taken along the classical trajectory of constant α. Likewise, the third, fourth, and other lines of (2.8) lead to

(2.18)

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее