135887 (Разработка блока управления электромеханическим замком), страница 5

2016-08-01СтудИзба

Описание файла

Документ из архива "Разработка блока управления электромеханическим замком", который расположен в категории "". Всё это находится в предмете "радиофизика и электроника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "радиоэлектроника" в общих файлах.

Онлайн просмотр документа "135887"

Текст 5 страницы из документа "135887"

Из справочной литературы [19] имеем данные об условиях эксплуатации применяемых в устройстве транзисторов КТ3102:

  • граничная частота при Vкб=5В, Iэ=10мА

не менее 900МГц

  • постоянное напряжение Vкэ при Rэб<3кОм

15В

  • постоянный ток коллектора

30мА

  • температура окружающей среды

от 213 до 398К

  • рассеиваемая мощность при Т=213...338К, р<665Па

150мВт

  • при Т=398К

60мВт

Из справочной литературы имеем следующие данные об условиях эксплуатации резисторов типа С2-23:

  • интервал рабочих температур

-60...+1550С

  • относительная влажность воздуха при температуре 400С

до 98%

- давление окружающей среды, мм. рт.ст.

5...2280

Сопоставляя заданные условия эксплуатации прибора и условия эксплуатации резисторов, заключаем, что выбранный тип пригоден для эксплуатации в данных условиях.

Из справочной литературы [18] имеем следующие данные об условиях эксплуатации диодов типа КД522:

  • интервал рабочих температур

-60...+1250С

  • относительная влажность воздуха при температуре 200С

до 98%

  • давление окружающей среды, мм.рт.ст.

5...800

Сопоставляя заданные условия эксплуатации прибора и условия эксплуатации диодов, заключаем, что выбранный тип пригоден для эксплуатации в данных условиях.

Сопоставление характеристик остальных ЭРЭ (микросхем, диодов, транзисторов, и т.д.), используемых в модулях замка, с условиями эксплуатации, позволяет заключить, что названные ЭРЭ пригодны для эксплуатации в заданных условиях.

Сравнительный анализ по использованию элементной базы в данных модулях согласно предложенной схеме электрической принципиальной показал соответствие эксплуатационных и технических характеристик ЭРЭ заданным условиям эксплуатации.

В результате сопоставления условий эксплуатации разрабатываемого прибора и условий эксплуатации применяемых в нем ЭРЭ провели выбор элементной базы. Выбранная элементная база является унифицированной.

    1. Выбор материалов конструкций

Выбор материалов конструкций разрабатываемого изделия проводим согласно требованиям, изложенным в ТЗ.

Материалы конструкций должны обладать следующими свойствами:

  • иметь малую стоимость;

  • легко обрабатываться;

  • быть легким;

  • обладать достаточной прочностью и легкостью;

  • внешний вид материала кожуха, лицевой и задней панелей должен отвечать требованиям ТЗ;

  • сохранять свои физико-химические свойства.

Применение унифицированных материалов конструкций, ограничения номенклатуры применяемой детали позволяет уменьшить себестоимость разрабатываемого изделия, улучшить производственную и эксплуатационную технологичность.

Сохранение физико-химических свойств материалов в процессе их эксплуатации достигается выбором для них необходимых покрытий. При выборе покрытий для материалов конструкций необходимо руководствоваться рекомендациями и требованиями изложенными в ГОСТ9.303‑84 и ОСТ4ГО.014.000. Изготовление деталей конструкции типовыми технологическими операциями также позволяет снизить затраты при серийном выпуске изделия в промышленности. При изготовлении РЭА наиболее широкое применение нашли следующие технологические операции:

  • штамповка;

  • точечная электросварка;

  • и другие.

Для разрабатываемого прибора, учитывая программу выпуска целесообразно применение деталей, изготовленных штамповкой.

Холодная штамповка относится к наиболее прогрессивным способам изготовления заготовок деталей из листа и ленты вырубкой, вытяжкой, проколкой, гибкой, раздачей и т.д. Однако целесообразность её применения определяется рядом условий и прежде всего серийностью выпуска изделия, конфигурацией детали, механическими свойствами материала, требуемой точностью изготовления детали.

Детали из листового материала в наиболее общем виде можно разделить на плоские, гнутые и объемные (полые), а соответствующие операции холодной штамповки - на вырубку гибку и вытяжку. Плоские заготовки, получаемые холодной штамповкой, основанные на резании материалов (отрезка, вырубка, пробивка, надрезка, зачистка и т.п.), можно изготовлять из всех металлов и их сплавов, а также из многих неметаллических материалов. Гнутые и объемные (полые) детали, получаемые пластическим деформированием материалов целесообразнее изготовлять из материалов со сравнительно малым пределом текучести, низкой твердостью и большим относительным удлинением.

Анализ наиболее распространенных конструкций заготовок деталей, изготовляемых холодной штамповкой, позволяет установить некоторые технологические особенности их конструирования, в соответствии с которыми следует:

  • шире применять штампосварные конструкции;

  • учитывать технологические особенности различных штамповочных операций;

  • для увеличения прочности деталей применять ребра жесткости, загибку фланцев, отбортовку и закатку кромок;

  • избегать сложных кривых (окружностей), внутренних откосов;

  • обеспечивать конфигурацию деталей или её развертки, дающей наивыгоднейшее использование листового материала и позволяющее применять малоотходный или безотходный раскрой; если отходы неизбежны, то желательно придавать им конфигурацию, соответствующую другой детали, согласованием конфигурации и расположения наружного контура одной детали с наружным контуром другой или использование отходов внутреннего контура;

  • снижать трудоемкость изготовления детали применением стандартных профилей;

  • максимально унифицировать марки материала и уменьшать номенклатуру применяемых толщин материала.

Плоские детали из листового материала толщиной от 0.05 до 25мм можно отрезать на гильотинных ножницах, в отрезных штампах и вырубать в штампе на прессе.

Способ получения детали зависит от контура детали или развертки. Унификация размеров вырубаемых элементов (отверстий, пазов, выступов, радиусов сопряжений) позволяет использовать поэлементно штамповку. Минимальная ширина детали для отдельных участков её контура зависит от толщины металла и его механических свойств. Толщина материала заготовки, её ширина также влияет на конструктивные формы заготовок при изготовлении их рассматриваемым способом.

Основные технологические требования к конструкции гнутой детали заключаются в обеспечении формы гибки. Наиболее технологичны Г‑образные и П‑образные сечения, т.е. детали типа уголков и скоб.

При выборе конструкции детали, изготовленной гибкой, рекомендуется:

  • при гибке твердых и малопластичных металлов (бронза, сильно наклепанная латунь, лента пружинной стали и др.) линию сгиба располагают перпендикулярно направлению проката;

  • минимально допустимые радиусы применять только при необходимости;

  • если деталь имеет П‑образную форму и скошенные до зоны деформации боковые стороны, то происходит неполный изгиб, а в месте изгиба - смятие заготовки.

Штампованные детали изготавливаются двумя группами технологических операций: разделительные и формообразующие. К первой группе относятся операции отрезки, вырубки, пробивки и т.п. Ко второй группе относятся операции гибки, вытяжки, высадки и т.п. Стоимость штампованной детали тем меньше, чем проще её форма и размеры. Для изготовления деталей из листовых материалов применяют разнообразные материалы, как металлические, так и неметаллические. Из металлических сплавов широкое применение получили алюминиевые сплавы из стали, используется также латунь и магниевые сплавы. Учитывая специальные требования к прочности прибора, рекомендуется изготавливать кожух и основание прибора из стали толщиной 1.5...2мм. Исходя из вышесказанного, выбираем сталь марки Ст08кп.

Для изготовления печатных плат в РЭА наиболее широкое распространение получили стеклотекстолит и гетинакс. Материал для изготовления печатной платы должен иметь следующие показатели (в заданных условиях эксплуатации РЭС):

  • большую электрическую прочность;

  • малые диэлектрические потери;

  • допускать штамповку;

  • выдерживать кратковременное воздействие температуры до плюс 2400С в процессе пайки на плате ЭРЭ;

  • иметь высокую влагостойкость;

  • быть дешёвым;

  • обладать химической стойкостью к действию химических растворов, используемых в техпроцессах изготовления платы.

Для изготовления плат общего применения в РЭС наиболее широко используется стеклотекстолит. Фольгированный стеклотекстолит представляет собой слоистый прессованный материал, изготовленный на основе ткани из стеклянного волокна, пропитанной термореактивным связующим на основе эпоксидной смолы, и облицованный с одной стороны медной электролитической оксидированной или гальваностойкой фольгой (изготавливают листами толщиной: до 1 мм - не менее 400х600мм; от 1,5 и более - не менее 600х700мм). На основании вышеприведенного, для изготовления печатной платы может использоваться следующий материал:

  • СФ-2-35-1,5 ГОСТ 10316-78 - стеклотекстолит фольгированный предназначен для изготовления печатных плат с повышенными диэлектрическими свойствами.

Поверхностное электрическое сопротивление после кондиционирования в условиях 96ч/плюс 40C/ 93%, Ом не менее 1010

В таблице 3.2.1 приведены материалы, используемые для изготовления блока управления замком на электронных ключах.

Таблица 3.2.1 – Применяемые материалы.

Наименование изделия

Марка материала

Покрытие

Корпус

Ст08кп

Эмаль ГФ‑245-ПМ светло-серая

Крышка

Ст08кп

Эмаль ГФ‑245-ПМ светло-серая

Плата печатная

СФ2‑35

Сплав «Розе»



4 Выбор и обоснование компоновочной схемы, методов и

принципов конструирования

4.1 Выбор компоновочной схемы

Основная компоновочная схема изделия определяет многие важнейшие характеристики РЭС: габариты, вес, объем монтажных соединений, способы защиты от полей, температуры, механических воздействий, ремонтопригодность.

Различают три основные компоновочные схемы РЭС [1]:

  • централизованная;

  • децентрализованная;

  • централизованная с автономными пультами управления.

Каждая из этих схем обладает своими достоинствами и недостатками.

При централизованной компоновке все элементы сложной системы располагаются в одном отсеке на специальных этажерочных конструкциях или шкафах, длина и количество межблочных соединений сведены к минимуму, ремонт и демонтаж наиболее удобны, легче выполнить качественные системы охлаждения и амортизации. Такая компоновочная схема требует более тщательной экранировки, вызывает затрудненность компоновки изделия, часто требующей доработки его, обладает относительно меньшей надежностью систем охлаждения, герметизации, виброзащиты [1].

Децентрализованная компоновочная схема обеспечивает относительно большую легкость размещения элементов изделия на объекте, не требуется тщательная экранировка отдельных блоков, при соответствующих схемных решениях может быть более надежной, сохраняя частичную работоспособность при выходе из строя отдельных элементов изделия. Недостатком является значительная длина межблочных соединений, затруднен полный демонтаж системы, для каждого отдельного блока необходимо предусматривать автономные системы охлаждения, виброзащиты [1].

Наиболее распространен способ централизованной компоновки, при котором все элементы сложной РЭС, кроме входных и управляющих устройств, распологают в одном участке или отсеке блока. Однако внутри этого отсека компоновка выполняется в виде совокупности отдельных блоков и приборов [1]

4.2 Выбор и обоснование метода и принципа

конструирования

На основе проведенного разбиения электрической схемы и анализа существующих конструкций выбирается метод конструирования устройства в целом и его частей. Существующие методы конструирования РЭС подразделяются на три взаимосвязанные группы [2]:

по видам связей между элементами;

по способу выявления и организации структуры связей между элементами;

по степени автоматизации конструирования РЭС - зависит от назначения аппаратуры и ее функций, преобладающего вида связей, уровня унификации, автоматизации и т.д.

Рассмотрим кратко сложившиеся методы конструирования РЭС.

Геометрический метод. В основу метода положена структура геометрических и кинематических связей между деталями, представляющая собой систему опорных точек, число и размещение которых зависит от заданных степеней свободы и геометрических свойств твердого тела [2].

Машиностроительный метод. В основу этого метода конструирования положена структура механических связей между элементами, представляющая собой систему опорных поверхностей. Машиностроительный метод используется для конструирования устройств и элементов РЭА, которые несут большие механические нагрузки и в которых неизбежны вследствие этого большие деформации [2].

Топологический метод. В основу метода положена структура физических связей между ЭРЭ. Топологический метод, в принципе, может применяться для выявления структуры любых связей, однако конкретное его содержание проявляется там, где связности элементов может быть сопоставлен граф [2].

Метод проектирования моноконструкций. Основан на минимизации числа связей в конструкции, он применяется для создания функциональных узлов, блоков, РЭА на основе оригинальной несущей конструкции в виде моноузла (моноблока) с оригинальными элементами [2].

Базовый (модульный) метод конструирования. В основу метода положен модульный принцип проектирования. Деление базового метода на разновидности связано с ограничениями, схемной конструкторской унификацией структурных уровней (модулей функциональных узлов, блоков). Базовый метод является основным при проектировании современной РЭА, он имеет много преимуществ по сравнению с методом моноконструкций [2]:

на этапе разработки позволяет одновременно вести работу над многими узлами и блоками, что сокращает сроки проведения разработок; упрощает отладку и сопряжение узлов в лаборатории, так как работа любого функционального узла определяется работой известных модулей, резко упрощается конструирование и макетирование; сокращает объем оригинальной конструкторской документации, дает возможность непрерывно совершенствовать аппаратуру без коренных изменений конструкции; упрощает и ускоряет внесение изменений в схему, конструкцию и конструкторскую документацию;

на этапе производства сокращает сроки освоения серийного производства аппаратуры; упрощает сборку, монтаж, снижает требования к квалификации сборщиков и монтажников; снижает стоимость аппаратуры благодаря широкой механизации и автоматизации производства; повышает степень специализации производства;

при эксплуатации повышает эксплуатационную надежность РЭА, облегчает обслуживание, улучшает ремонтопригодность аппаратуры.

При компоновке должны быть учтены требования оптимальных функциональных связей между модулями, их устойчивость, стабильность, требования прочности и жесткости, помехозащищенности и нормального теплового режима, требования технологичности, эргономики, удобства эксплуатации и ремонта. Размещение комплектующих элементов в модулях всех уровней должно обеспечивать равномерное и максимальное заполнение конструктивного объема с удобным доступом для осмотра, ремонта и замены. Замена детали или сборочной единицы не должна приводить к разборке всей конструкции или ее составных частей. Для устойчивого положения изделия в процессе эксплуатации центр тяжести должен находиться, возможно, ближе к опорной поверхности. При компоновке модулей всех уровней необходимо выделить достаточно пространства для межсоединений.

При проектировании необходимо придерживаться следующих рекомендаций [2]:

  • минимальный внутренний радиус изгиба проводника должен быть не менее диаметра провода с изоляцией;

  • провода питания переменного тока следует свивать для уменьшения возможности наводок;

  • провода, подводящие к сменным элементам должны иметь некоторый запас по длине, допускающий повторную заделку провода;

  • провода не должны касаться острых металлических кромок;

  • монтажные провода целесообразно связать в жгут, при этом обеспечивается возможность расчленения монтажных операций на более простые.

Для разъемного варианта конструкции большое распространение получило использование объединительной печатной платы, что позволяет существенно уменьшить габаритные размеры изделия, упростить сборку.

При компоновке РЭС необходимо решать вопросы электромагнитной совместимости элементов, в частности, защиты от электромагнитных, электрических и магнитных помех.

При защите РЭС от воздействий помех, определяют максимальное значение сигналов помехи на выходах схем, усложняют схему введением фильтров на линиях входа-выхода, устраняют помехи по линиям электропитания с помощью радиочастотных фильтров, экранируют входные цепи чувствительных схем, для элементов РЭС разрабатывают кожухи-экраны.

В качестве метода конструирования выбираем базовый (модульный) метод конструирования.

Исходя из сказанного проведем деление схемы электрической принципиальной на функционально законченные узлы. Схему прибора целесообразно разделить на 3 узла:

  • базовый модуль;

  • микропроцессорный модуль;

  • модуль звуковой и световой индикации.

Радиоэлементы каждого функционального узла предлагается разместить на отдельных печатных платах. Силовой трансформатор необходимо закрепить непосредственно на плате базового модуля. Связь между базовым и микропроцессорным модулем обеспечивается с помощью штырькового разъема, а между базовым модулем и модулем звуковой и световой индикации посредством гибких монтажных проводов.

При данном разбиении схемы электрической принципиальной обеспечивается минимальное количество соединительных проводников, т.е. минимум электрических связей между узлами, высокая ремонтопригодность.

5 Выбор способов и средств теплозащиты,

герметизации, виброзащиты и экранирования

5.1 Выбор способов охлаждения на ранней стадии

проектирования

Для обеспечения нормального теплового режима необходимо выбрать такой способ охлаждения блока управления электромеханическим замком (далее "блока"), при котором количество тепла, рассеиваемого в окружающую среду, будет равным мощности теплоты выделения блока, при этом также необходимо учесть теплостойкость элементной базы.

Расчет температуры всех входящих в блок элементов представляет собой чрезвычайно трудоемкий процесс. В связи с этим встает вопрос: для каких элементов необходимо рассчитывать температуру, чтобы с заданной достоверностью можно было судить о соответствии теплового режима всего блока требованиям технического задания.

Методика определения числа элементов РЭС, подлежащих расчету теплового режима, состоит в следующем [3]:

1. Задаемся вероятностью правильного расчета р.

Если вероятность p > 0,8, то можно остановиться на выбранном способе охлаждения. При вероятностной оценке 0,8 > р > 0,3 можно применить выбранный способ охлаждения, однако при конструировании РЭС обеспечению нормального теплового режима следует уделить тем больше внимания, чем меньше вероятность. При вероятности 0,3 > р > 0,1 не рекомендуется использовать выбранный способ охлаждения.

Исходя из вышеизложенного, задаемся вероятностью правильного расчета р > 0,8.

2.Определяем средний перегрев нагретой зоны.

Исходными данными для проведения последующего расчета являются:

  • коэффициент заполнения по объему 0,6;

  • суммарная мощность, рассеиваемая в блоке, Вт 24;

  • давление окружающей среды, кПа 103;

  • давление внутри корпуса, кПа 103;

  • габаритные размеры корпуса, м 0,183x0,130x0,065;

Средний перегрев нагретой зоны герметичного корпуса блока с естественным воздушным охлаждением определяется по следующей методике [4]:

  1. Рассчитывается поверхность корпуса блока:

Sk = 2 [ L1 L2 + ( L1 + L2 ) L3 ] (5.1.1)

где L1, L2 - горизонтальные размеры корпуса, м;

L3 - вертикальный размер, м.

Для разрабатываемой конструкции блока L1 = 0,183м, L2 = 0,130м, L3 = 0,065м. Подставив данные в (5.1.1), получим:

Sk = 2·[0,183·0,130+(0,183+0,130)·0,065]=0,44 м2.

  1. Определяется условная поверхность нагретой зоны:

Sз = 2 [ L1 L2 + ( L1 + L2 ) L3 Кз] (5.1.2)

где КЗ - коэффициент заполнения корпуса по объему. В нашем случае

КЗ = 0,6. Подставляя значение КЗ в (5.2.2), получим:

Sз = 2 · 0,183·0,130+0,183+0,130·0,065·0,6=0,036 м2.

  1. Определяется удельная мощность корпуса блока:

Qk = P \ Sk (5.1.3)

где Р - мощность, рассеиваемая в блоке. Для разрабатываемого блока мощность, рассеиваемая в дежурном режиме Р =1,5 Вт.

Тогда:

Qk = 1.5 \ 0,44 = 3,41 Вт/м2.

  1. Определяется удельная мощность нагретой зоны:

Qз = P \ Sз (5.1.4)

Qз = 1,5 \ 0,036 = 41,6 Вт/м2.

  1. Находится коэффициент 1 в зависимости от удельной мощности корпуса блока формула (5.1.5):

1 = 0,1472 Qk – 0,2962 10 –3 Qk2 + 0,3127 10 –6 Qk3 (5.1.5)

1 = 0,1472 2,41 – 0,2962 10 –3 3,412 + 0,3127 10 –6 3,413 = 0,49

Находится коэффициент 2 в зависимости от удельной мощности нагретой зоны формула (5.1.6):

2 = 0,1390 Qз – 0,1223 10 –3 Qз2 + 0,0698 10 –6 Qз3 (5.1.6)

1 = 0,1390 41,6 – 0,1223 10 –3 41,62 + 0,0698 10 –6 41,63 = 5,56

  1. Определяется коэффициент КН1 в зависимости от давления среды вне корпуса блока:

KH1 = 0,82 + 1 \ (0,925 + 4,6 10-5 H1) (5.1.7)

где Н1 - давление окружающей среды в Па. В нашем случае Н1=87кПа. Подставив значение Н1 в (5.1.7), получим:

KH1 = 0,82 + 1 \ (0,925 + 4,6 10-5 87 103) = 1,87

  1. Определяется коэффициент КН2 в зависимости от давления среды внутри корпуса блока:

KH2 = 0,8 + 1 \ (1,25 + 3,8 10-5 H2) (5.1.8)

где Н2 - давление внутри корпуса в Па.

В нашем случае Н21=87кПа. Тогда:

KH2 = 0,8 + 1 \ (1,25 + 3,8 10-5 87 103) = 1,598

  1. Рассчитывается перегрев корпуса блока:

k = 1 KH1 (5.1.9)

к = 0,49 · 1,87 = 0,9163

10. Рассчитывается перегрев нагретой зоны:

з = k +(2 - 1 ) KH2 (5.1.10)

з = 0,9163 + (5,56 – 0,49) · 1,598 = 9,01

11. Определяется средний перегрев воздуха в блоке:

в = (к - з ) 0,5 (5.1.11)

в = 0,5 · (0,9163 + 9,01) = 4,96

12. Определяется удельная мощность элемента:

Qэл = Pэл \ Sэл (5.1.12)

где Рэл мощность, рассеиваемая элементом (узлом), температуру которого требуется определить, Вт

Sэл площадь поверхности элемента, омываемая воздухом, см.кв

Наименее теплостойкий элемент базового модуля в дежурном режиме стабилизатор. Для него Рэл = 0,15 Вт, Sэл = 1,5 см.кв.

Qэл = 0,15 \ 1,5 = 0,1

13. Определяется перегрев поверхности элементов:

эл = з (0,75 + 0,25 Qэл \ Qз ) (5.1.13)

эл = 9,01 (0,75 + 0,25 0,1 \ 41,6 ) = 6,76

14. Определяется перегрев среды, окружающей элемент:

эс = в (0,75 + 0,25 Qэл \ Qз ) (5.1.14)

эл = 4,96 (0,75 + 0,25 0,1 \ 41,6 ) = 3,72

15. Определяется температура корпуса блока:

Тк = к + Тс (5.1.15)

где Тс температура среды, окружающей блок.

Тк = 0,9163 + 45 = 45,916

16. Определяется температура нагретой зоны:

Тз = з + Тс (5.1.16)

Т з = 9,01 + 45 = 54,01

17. Определяется температура поверхности элемента:

Тэл = эл + Тс (5.1.17)

Тэл = 6,76 + 45 = 51,76

18. Определяется средняя температура воздуха в блоке:

Тв = в + Тс (5.1.18)

Тв = 4,96 + 45 = 49,96

19. Определяется температура среды, окружающей элемент:

Тэс = эс + Тс (5.1.19)

Тэс = 3,72 + 45 = 48,72

Для выбора способа охлаждения исходными данными являются следующие данные:

  • суммарная мощность Рр, рассеиваемая в блоке, Вт 1,5;

  • диапазон возможного изменения температуры окружаю-

щей среды:

микроклимат +20…+24C

и по ГОСТ 15150-69, +10…+45 C;

  • пределы изменения давления окружающей среды:

Рмах, кПа (мм рт. ст.) 106,7 (800);

Pmin, кПа (мм рт. ст.) 84,0 (630);

  • допустимая температура элементов

(по менее теплостойкому элементу), Тmax, C +75;

  • коэффициент заполнения по объему 0,6;

Выбор способа охлаждения часто имеет вероятностный характер, т.е. дает возможность оценить вероятность обеспечения заданного в техническом задании теплового режима РЭС при выбранном способе охлаждения, а также те усилия, которые необходимо затратить при разработке будущей конструкции РЭС с учетом обеспечения теплового режима.

Выбор способа охлаждения можно выполнить по методике [3]. Используя графики, характеризующие области целесообразного применения различных способов охлаждения и расчеты, приведенные ниже, проверим возможность обеспечения нормального теплового режима блока в герметичном корпусе с естественным воздушным охлаждением.

Условная величина поверхности теплообмена рассчитывается по (5.1.2).

Sп = 0,036м2.

Определив площадь нагретой зоны, определим удельную мощность нагретой зоны: плотность теплового потока, проходящего через поверхность теплообмена, рассчитывается по (5.1.4). qЗ = 41,6 Вт/м2.

Тогда: lg qЗ = lg 41,6 = 1,619.

Максимально допустимый перегрев элементов рассчитывается по (5.1.13)

, (5.1.13)

Тогда:

По графикам [рис.2.35, рис.2.38, 3] для значений qЗ = 41,6 Вт/м2 и определяем, что нормальный тепловой режим блока в герметичном корпусе с естественным воздушным охлаждением будет обеспечен с вероятностью p = 0,9. Так как полученное значение вероятности p > 0,8, то можно остановиться на выбранном способе охлаждения.

Более подробный расчет теплового режима проводится далее.

5.2 Выбор способов и методов герметизации

Герметизация - обеспечение практической непроницаемости корпуса РЭС для жидкостей и газов с целью защиты ее элементов от влаги, плесневых грибков, пыли, песка, грязи и механических повреждений. Она является наиболее радикальным способом защиты элементов РЭС.

Различают индивидуальную, общую, частичную и полную герметизацию [5].

Индивидуальная допускает замену компонентов РЭС при выходе из строя и ремонт изделия. При общей герметизации (она проще и дешевле индивидуальной) замена компонентов и ремонт возможны только при демонтаже корпуса, что может вызвать затруднение.

Для частичной герметизации применяют пропитку, обволакивание и заливку как компонентов, так и РЭС лаками, пластмассовыми или компаундами на органической основе. Они, как правило, не обеспечивают герметичность в течение длительного времени.

Практически полная защита РЭС от проникновения воды, водяных паров и газов достигается при использовании металлов, стекла и керамики с достаточной степенью непроницаемости. Наиболее распространенные способы такой герметизации - применение металлических корпусов с воздушным заполнением. Исходя из вышесказанного, применительно для блока управления электромеханическим замком, выбираем индивидуальную герметизацию.

Важным фактором повышения эффективности герметизации является лакокрасочные, гальванические и химические покрытия пропитывающих, обволакивающих и заливочных материалов, металлического и металло-полимерного гермокорпусов.

Разъемная герметизация применяется для защиты блоков РЭС, требующих замены компонентов при ремонте, регулировке и настройке.

Общие требования к покрытиям металлическим и неметаллическим неорганическим установлены ГОСТ 9.301-86 (СТ СЭВ 5293-85, СТ СЭВ 5294-85, СТ СЭВ 5295-85).

Требования к поверхности основного металла: под защитные покрытия RZ40, не грубее; под защитно-декоративные Ra2,5, не грубее; под твердые и электроизоляционные Ra1,25, не грубее.

Данные о покрытиях деталей и сборочных единиц разрабатываемой конструкции блока управления замком электромеханическим приведены в таблице 5.2.1

Таблица 5.2.1 - Данные о покрытиях деталей и сборочных единиц конструкции блока управления замком электромеханическим.

Детали, сборочные единицы

Материал детали, сборочной единицы

Покрытия

Металлическое

Химическое

Лакокрасочное

Плата печатная

СФ-2-35Г-1,5

Сплав "Розе"

-

-

Корпус

Ст08кп

-

-

ГФ‑245-ПМ (светло-серая)

Крышка

Ст08кп

-

-

ГФ‑245-ПМ (светло-серая)

Эмаль ГФ‑245-ПМ, светло-серая, ГОСТ 18374-79 - покрытие эмалью ГФ‑245-ПМ, цвет светло-серый, эксплуатируется в условиях умеренного климата.

Эмаль ГФ‑245-ПМ предназначена для покрытия металлических поверхностей, работающих в условиях умеренного и холодного климата. Стойкость эмалей к статическому воздействию воды не менее 24 ч.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5288
Авторов
на СтудИзбе
417
Средний доход
с одного платного файла
Обучение Подробнее