L01_05_2002 (Лекции по твердотельной электронике), страница 6

2016-08-01СтудИзба

Описание файла

Документ из архива "Лекции по твердотельной электронике", который расположен в категории "". Всё это находится в предмете "радиофизика и электроника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "радиоэлектроника" в общих файлах.

Онлайн просмотр документа "L01_05_2002"

Текст 6 страницы из документа "L01_05_2002"

Рис. 1.21. Диаграмма, поясняющая температурную зависимость подвижности μef, при рассеянии на решетке μr и ионизированной примеси μiK.

1.2.6. Расчет электропроводности полупроводниковых кристаллов на основе рассмотренных моделей.

Электропроводность полупроводникового кристалла определяется электропроводностью электронов и дырок, поэтому для нее, используя (1.42) можно записать:

σ = σnp = qμnn + qμpp = q(μnn + μpp) (1.46)

Как видно из (1.46) электропроводность полупроводника зависит от концентрации носителей заряда и подвижности, значения которых зависят как от технологии так и температуры.

Собственный полупроводник.

Для чистого бездефектного кристалла с проводимостью близкой к собственной справедливо n = p = ni см. (1.19), тогда для электропроводности собственного полупроводника можно записать:

(1.50)

Поскольку σ0(T) слабо зависит от температуры в оценочных расчетах принимают предэкспонциальный множитель постоянным равным значению электропроводности при T→∞. Формула (1.50) хорошо описывает экспериментальную кривую электропроводности для чистых кристаллов с совершенной структурой (см. рис. 1.1. ) и из экспериментальной зависимости используя соотношение (1.50) можно определить такие характеристические параметры материала как Eg и σ0.

Легированный полупроводник.

Для легированного кристалла можно выделить несколько температурных областей как для изменения с температурой концентрации (см. п.п. 1.2.4 рис. 1.16 ), так и для изменения с температурой подвижности носителей заряда (см п.п. 1.2.5 рис. 1.21). При этом в области, где доминирует примесная приводимость ni(T)<d или ni(T) <a помимо рассеяния на решетке на величину электропроводности может оказывать влияние и рассеяние на примесях. Напомним, что эффективная подвижность определяется рассеянием на колебаниях решетки и рассеянием на ионизованной примеси см. (1.48).

Особенно заметным влияние изменения подвижности становится в области истощения примеси, для которой концентрация основных носителей с хорошей точностью можно считать постоянной nn≈Nd pp≈Na, поскольку выполняется условие ni<d, ni<a и температурной зависимостью ni(T) можно пренебречь).

Таким образом введение легирующей примеси приводит не только к изменению электропроводности кристаллов, в результате появления дополнительных носителей заряда, но и к изменению характера зависимости электропроводности от температуры. Введение в небольших концентрациях примеси (обычно не более сотых долей процента) не оказывает значительного влияния на решеточное рассеяние, однако концентрация ионизованной примеси может изменяться в миллионы раз, естественно предположить, что при этом возрастет и степень рассеяния на ионах примеси при низких температурах.

Для электропроводность легированных кристаллов можно записать:

(1.51)

Анализ соотношений (1.50) показывает, что изменение концентрации от температуры зависит экспоненциально от изменения положения уровня Ферми. Вообще уровень Ферми следует рассматривать как хороший индикатор процессов, происходящих с носителями заряда. Если уровень Ферми приближается к зоне проводимости значит возрастает концентрация электронов и σn, при этом концентрация дырок и соответственно σp падает.

Показанные на рис. 11 диаграммы помогут понять как с температурой изменяется уровень Ферми (а), концентрация носителей заряда (б), подвижность (в) и электропроводность (г).

В области высоких температур, там, где доминируют межзонные переходы и собственная концентрация носителей больше примесной ni>>nпр полупроводник ведет себя как собственный (область I). В области низких температур (область III), там где примесь не ионизована уровень Ферми должен находиться выше донорного уровня (вероятность заполнения электронами больше 1/2). По мере того, как температура повышается доноры отдают электроны в зону проводимости и постепенно полностью ионизуются (область II). Область II принято называть областью истощения примеси, поскольку все атомы доноров отдали свои электроны, а концентрация собственных электронов все еще очень мала, концентрация электронов в этой области остается постоянной и примерно равной концентрации примесных атомов. Именно эта температурная область и является основной областью работы значительной части полупроводниковых диодов и Поскольку в области II концентрация носителей изменяется незначительно, то в электропроводности (кривая В) становится заметен вклад подвижности, что приводит к некоторому падению электропроводности с ростом температуры (что вообще говоря не характерно для полупроводников) в некотором интервале температур за счет доминирования рассеяния на колебаниях решетки. Затем с повышением температуры имеет место переход к собственной проводимости, концентрация электронов и электропроводность начинают возрастать экспоненциально с температурой.

Подводя итоги можем сделать вывод, что в соответствии с рассмотренной моделью основными внешними факторами влияющими на электропроводность в рамках рассмотренных моделей являются: ширина запрещенной зоны, концентрация и тип примесей, глубина залегания примесных уровней.

В табл. 1.1 приведены параметры характеризующие кристаллы основных полупроводников с собственной проводимостью. В этой таблице так же приведены такие, параметры как работа выхода (расстояние от уровня Ферми в собственном полупроводнике до нулевого уровня в вакууме) и сродство к электрону расстояние от уровня Ферми в собственном полупроводнике до нулевого уровня в вакууме)

Табл. 1.1.

Параметры полупроводниковых материалов

Параметр, обозначение, единица измерения

Si

Ge

GaAs

Ширина запрещенной зоны, Eg, эВ при T = 0K

1,17

0,74

1,52

Ширина запрещенной зоны, Eg, эВ при T = 300K

1,11

0,66

1,43

Температурный коэффициент ε = dE/dT*104, эВК

-2.8

-3,7

-5,0

Работа выхода электронов, Ф, эВ, при T=300К

4,8

4,4

4,7

Сродство к электрону, χ , эВ, при T=300К

4,05

4,0

4,07

Подвижность электронов μn, см2/(Вс), при T=300К

1350

3800

8600

Подвижность дырок μP, см2/(Вс), при T=300К

480

1820

400

Собственная концентрация носителей заряда ni, см-3 при T=300К

1,61010

2,51013

1,1017

Диэлектрическая проницаемость, ε, при T=300К

11,7

16,3

12

Температура плавления ТК

1420

937

1238

Коэффициент линейного расширения 10-6 , К-1

2,54

5,82

5,82

Удельная теплоемкость Дж/(кг К), при T = 300К

406

310

Удельная теплопроводность Вт/(мК)

150

60

58

Плотность ρ, г/см3

2,33

5,32

5,4

Табл. 1.2

Свойства примесей, используемых для легирования полупроводниковых кристаллов.

Примесь*

B

In

Al

P

Sb

E, эВ

Тип

E, эВ

Тип

E, эВ

Тип

E, эВ

Тип

E, эВ

Тип

Si

0,045

A

0,155

A

0,068

A

0,045

Д

0,043

Д

Ge

0,011

A

0,120

A

0,011

A

0,013

Д

0,010

Д

Примесь*

Se

Pb

Mg

Zn

Mn

E, эВ

Тип

E, эВ

Тип

E, эВ

Тип

E, эВ

Тип

E, эВ

Тип

GaAs

0,058

Д

0,058

Д

0,029

A

0,031

A

0,113

A

Сравнение свойств Si и Ge действительно подтверждает общие свойства, следующее из положения элементарного полупроводника в таблице Д.И. Менделеева: чем выше стоит элемент в столбце таблице элементов, тем больше у него ширина запрещенной зоны.

В таблице 1.2 приведены характеристики некоторых примесей, используемых для легирования этих материалов.

Из данных таблицы 1.2 следует, что для приведенных легирующих примесей энергия активации меньше тепловой энергии при Т=300К, это означает, что при комнатной температуре практически все эти примеси ионизованы.

Рис. 1.22 Диаграммы изменения с температурой положения уровня Ферми (А), концентрации носителей заряда (Б), проводимости (В), подвижности (Г)

На рис. 1.22 показано изменение с температурой основных параметров, используемых при расчете проводимости легированного кристалла: положения уровня Ферми (А) , концентрации носителей заряда (Б), проводимости (В) и эффективной подвижности (Г) в зависимости от обратной температуры.

Контрольные вопросы.

1. Какой из перечисленных материалов при комнатной температуре имеет самую низкую собственную проводимость: Ge, Si, GaAs?

2. У какого из перечисленных материалов самая высокая собственная концентрация носителей заряда Ge, Si, GaAs?

3. Как изменится подвижность электронов, если возрастет их среднее время свободного пробега?

4. Если в кристалл Si с собственной проводимостью ввели примесь Al, то какой тип проводимости приобретет образец при комнатной температуре?

5. В кристалл кремния с собственной проводимостью ввели примесь фосфора, какой тип проводимости будет иметь образец при комнатной температуре?

6. Почему при введении в полупроводниковый кристалл легирующей примеси его электропроводность в области низких температур изменяется значительно сильнее, чем в области высоких ?

7. Почему в кристаллах кремния с собственной проводимостью преобладает электронная составляющая проводимости?

8. Где будет находиться уровень Ферми в кристалле Si, легированном фосфором при температуре близкой к абсолютному нулю?

9. Где будет находиться уровень Ферми в кристалле Si, легированном фосфором при температуре близкой к температуре плавления этого материала?

Лекция 5

1.2.7. Неравновесные электроны и дырки. Рекомбинация неравновесных носителей заряда.

Носители заряда, возникающие под действием тепла называются равновесными.

Внешнее воздействие на полупроводниковый кристалл может создавать избыточную концентрацию носителей заряда над равновесной. В этом случае говорят, что имеет место инжекция. После прекращения инжекции через некоторое время восстанавливается равновесие и концентрация носителей заряда возвращается к равновесной. Процессом способствующим восстановлению равновесья является рекомбинация.

Акт рекомбинации можно рассматривать как такое взаимодействие электрона и дырки, в результате которого свободный электрон возвращается из зоны проводимости в валентную зону, а энергия затраченная на переброс электрона из валентной зоны в зону проводимости выделяется в виде излучения или тепла.

Если полупроводник находится в равновесных условиях, то число носителей заряда, возникающих в нем в результате тепловой генерации равно числу носителей, исчезающих в результате рекомбинации и равновесная концентрация носителей не изменяется.

Соответствующее кинетическое уравнение, характеризующее изменение концентрации носителей заряда при наличии инжекции можно записать в следующем виде:

(1.52)

где G и U - соответственно скорость генерации и скорость рекомбинации (число электронов генерируемых или рекомбинирующих в единице объема в единицу времени), n - концентрация электронов в данный момент времени, n0 - равновесная концентрация электронов, G - генерационный член, τn - характеристическое время жизни, Δn - избыточная над равновесной концентрация носителей заряда. Решение этого уравнения имеет вид:

(1.53)

где A - зависит от начальных условий. Аналогичные соотношения можно записать для дырок:


(1.54)

В соответствии с (22, 23) константы τn и τp время жизни электронов и дырок можно определить как время в течение которого концентрация неравновесных (избыточных) носителей заряда убывает в e раз. Поскольку мы говорим избыточных, следовательно время измеряется после снятия возбуждения. Таким образом время жизни характеризует длительность пребывания в разрешенной зоне неравновесных носителей заряда.

Существует несколько механизмов рекомбинации, часто говорят каналов. Все эти каналы работают параллельно, поэтому существует некоторое эффективное время жизни для которого, учитывая что все каналы рекомбинации независимые можно написать:

(1.55)

где τef - эффективное время жизни электронов (или дырок), τi - время жизни, характеризующее i-й канал. Как видно из (22), если скорости рекомбинации по различным каналам значительно отличаются, то эффективное время жизни будет определяться тем каналом для которого время жизни минимально.

На рис. 1.23 показаны две возможные схемы рекомбинации. Левая схема соответствует случаю, когда свободные электрон и дырка непосредственно рекомбинируют сталкиваясь друг с другом, это так называемая межзонная рекомбинация. Она доминирует в том случае, когда концентрации свободных электронов и дырок велики, что имеет место в узкозонных материалах. В таких материалах как Ge, Si, GaAs доминирует рекомбинация через промежуточный уровень ловушки (правая схема на рис. 1.23).

При рекомбинации через промежуточный уровень ловушка сначала захватывает носитель одного знака, предположим электрон (1), и заряжается отрицательно (2). Затем она захватывает носитель другого знака - дырку (3), которая рекомбинирует с локализованным электроном и переводит ловушку вновь в нейтральное состояние (4).

(а) (б)

Рис. 1.23. Схемы рекомбинации электронов и дырок: межзонная (а) и чрез рекомбинационный уровень ловушки (б).

Таким образом, переход электрона из зоны проводимости в валентную зону происходит в два этапа: I- из зоны проводимости на рекомбинационный уровень, II - с рекомбинационного уровня в валентную зону (см. верхний рисунок)

На рисунке 13 показаны возможные процессы при взаимодействии носителей из разрешенных зон с ловушками: захват электрона (1) с последующей его рекомбинацией (2), захват дырки (3) с последующей ее рекомбинацией (4), эмиссия захваченного электрона (5), эмиссия захваченной дырки (6).

Рис. 1.24. Возможные процессы при взаимодействии носителей из разрешенных зон с ловушками.

После того как носитель был захвачен на ловушку для него существует две возможности: быть выброшенным обратно в зону из которой он пришел, прорекомбинировать с дыркой, которая захватывается заряженной ловушкой. Если процесс эмиссии преобладает над процессом рекомбинации, то такие уровни работают как уровни прилипания. После того как носитель некоторое время находился в локализованном состоянии он вновь становится свободным и может принимать участие в переносе заряда и соответственно электропроводности. Во втором случае носитель рекомбинирует и в процессах переноса заряда больше не участвует.

Диффузионный и дрейфовый токи.

Диффузия (от лат. diffusio - распространение, растекание, рассеивание) - неравновесный процесс, вызываемый тепловым движением частиц, приводящий к установлению равновесия и выравниванию концентраций (при постоянстве температуры и отсутствии внешних сил). Если частицы заряжены, то их диффузионное перемещение приводит к появлению диффузионных токов.

Диффузионный поток направлен из области высокой концентрации в область низкой концентрации. Свободные носители заряжены. Следовательно любое их перемещение, в том числе и диффузионное, приводит к появлению электрических токов, которые так и будем называть диффузионными.

Рис. 1.25. Схема, иллюстрирующая возникновение диффузионных токов электронов и дырок.

Схема на рис. 1.25 иллюстрирует возникновение диффузионных токов электронов и дырок. Следует обратить внимание, что потоки электронов и дырок на схеме направлены в одну сторону, а токи дырочный и электронный токи в разные. Направление дырочного тока совпадает с направлением потока, электронного противоположно, поэтому токи компенсируют друг друга уменьшая общий диффузионный ток.

Скорость диффузии (диффузионный поток) пропорционален градиенту концентрации, поэтому для диффузионных токов можно записать:

(1.61)

где Dn и Dp соответственно коэффициенты диффузии электронов и дырок. Коэффициенты диффузии носителей заряда связаны с их подвижностью соотношением Эйнштейна:

(1.62)

Коэффициент диффузии тем выше, чем выше подвижность носителей заряда.

Токи, возникающие во внешних полях принято называть дрейфовыми, поскольку внешнее поле не прекращая хаотического теплового движения носителей заряда заставляет их смещаться (дрейфовать) в направлении, которое зависит от знака носителя и направления внешнего поля. К дрейфовым токам можно отнести и рассмотренные ранее токи проводимости токи (их иногда называют омическими), используя (1.56) для них можно записать:

( 1.57)

Таким образом процессы, определяющие перенос зарядов в полупроводниках будут определяться четырьмя токами: дрейфовыми токами электронов и дырок, возникающими при наличии электрического поля и диффузионными токами электронов и дырок, возникающими в том случае, когда существует градиент концентрации носителей заряда.

Все четыре тока связаны между собой уравнением непрерывности (4), которой явилось следствием закона сохранения заряда.

1.2.8. Уравнение непрерывности.

Для полупроводника, в объеме которого происходит генерация и рекомбинация носителей заряда, используя (4) запишем:

(1.58)

где G и U соответственно члены характеризующие скорость генерации и скорость рекомбинации носителей заряда. Используя (21) и (24) и разделив левую и правую части уравнения на величину заряда электронов получим:

(1.59)

Для одномерного случая разделяя члены, относящиеся к электронам и дыркам , учитывая, что полный ток равен:

(1.60)

получим:

(1.61)

Связь между распределением заряда и электрического поля в образце устанавливается с помощью уравнения Пуассона:

(1.63)

Для полупроводника близкого к собственному основными зарядами являются электроны и дырки, поэтому:

(1.64)

Подставляя ∂E/∂x в (31) получим:

(1.65)

Считая, что в образце выполняется условие электронейтральности: Δp≈Δn и τp ≈ τn. суммируя уравнения для электронов и дырок получим:

(1.66)

где D и μ коэффициенты , характеризующие совместную диффузию и дрейф электронов и дырок, поэтому их и называют коэффициентами амбиполярной диффузии и амбиполярной подвижности:

(1.67)

Уравнение (1.67) описывает основные изменения происходящие с носителями заряда и соответственно токами в полупроводниковых материалах и соответственно приборах на их основе. Это уравнение в правой части содержит три члена: генерационно-рекомбинационный, диффузионный и дрейфовый. Это уравнение широко используется при анализе процессов в полупроводниковых приборах, поскольку позволяет значительно упростить расчеты, по существу заменив операции с четырьмя потоками носителей операциями с одним.

Пример.

Предположим, что у нас имеется полупроводниковый образец в центре которого инжектируется избыточная концентрация электронов и дырок (Δn ≈ Δp) , такое распределение можно создать коротким лазерным импульсом с энергией квантов большей ширины запрещенной зоны. Как со временем будет изменяться этот импульс, если к образцу приложить внешнее электрическое напряжение (рис. 1.26), которое создаст в нем электрическое.

Ответ на поставленный вопрос поможет дать уравнения (1.66), (1.67) при этом не обязательно решать само уравнение, достаточно воспользоваться введенными характеристическими коэффициентами, характеризующими совместно движение электронов и дырок (36). Действительно направление движения совпадает с электрическим полем, если подвижность - положительная величина и направлено в другую сторону, если подвижность - отрицательная величина.

Допустим, что рассматриваемый полупроводник n типа, тогда n>>p и из (1.67) получим, что μ ≈μp. Следовательно перемещение импульса носителей заряда в электрическом поле будет определяться перемещением дырок vдр= μpE.

Допустим, что рассматриваемый полупроводник p типа, тогда p>> n и из (1.67) получим, что μ ≈μn. Следовательно перемещение импульса носителей заряда в электрическом поле будет определяться перемещением электронов vдр= - μnE.

В случае собственного полупроводника (n = p = ni) μ = 0 и соответственно vдр= μE.

Рассмотренные варианты проиллюстрированы на нижней диаграмме рис. 1.26.

Рис. 1.26. Дрейф инжектированного светом электронно-дырочного импульса в электрическом поле.

В процессе дрейфа импульс будет расплываться за счет диффузии и общее число избыточных носителей заряда в нем будет уменьшаться в результате рекомбинации.

Приведенный пример демонстрирует эффективность уравнения (35) при анализе процессов в различных областях полупроводниковых приборов. Так биполярные полупроводниковые приборы (диоды, транзисторы, тиристоры и др) состоят из чередующихся областей p и n типа. Поэтому для анализа процессов в различных областях используются уравнения для неосновных носителей заряда.

Для p области p>>n и соответственно будут иметь место следующие уравнения.

(1.68)

Каждое из приведенных уравнений является частным случаем более общего уравнения (1.66) и используется для анализа процессов в полупроводниковых материалах и приборах именно для частных случаев, что значительно упрощает поиск возможного решения. Решение уравнения (1.66) достаточно в общем виде весьма сложно и, если это требуется по условиям задачи, то обычно выполняется численными методами с использованием соответствующих компьютерных программ.

Аналогично для n типа n>>p Для p соответственно будут иметь место

следующие уравнения:

(1.69)

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее