124688 (Устойчивость роторов с трещинами)

2016-08-01СтудИзба

Описание файла

Документ из архива "Устойчивость роторов с трещинами", который расположен в категории "". Всё это находится в предмете "промышленность, производство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "промышленность, производство" в общих файлах.

Онлайн просмотр документа "124688"

Текст из документа "124688"

РЕФЕРАТ

УСТОЙЧИВОСТЬ РОТОРОВ С ТРЕЩИНАМИ

Первая проблема, с которой приходится сталкиваться при создании математической модели - это определение закономерности влияния глубины трещины на жесткость ротора. Однако в процессе вращения ротора трещина "дышит", так как на участок с трещиной действует знакопеременный изгибающий момент. Следовательно, данная задача распадается на две составляющие:

  • определение максимальной потери жесткости при наличии трещины в статическом положении;

  • определение закономерности изменения жесткости в процессе вращения ротора.

Очевидно, что максимальная потеря жесткости соответствует полностью раскрытой трещине. Определить эту потерю жесткости можно с помощью 3-х мерной конечно-элементной модели участка ротора с трещиной. Однако такой подход потребует создания достаточно сложной программы. Чтобы упростить эту задачу, и свести зависимость между потерей жесткости и глубиной трещины к одной формуле или достаточно простому алгоритму из нескольких формул, авторы работ [1,2.3,4,5,7,8,] прибегали к различным методам, которые можно разделить на две категории:

1) аналитическое

2) полуэмпирическое

В работе [1] представлен чисто аналитический метод, где проблема потери жесткости решается с позиций механики трещин. A. D. Dimarogonas и С.А. Papadopoulos приводят выражение для расчета дефицита жесткости одномассового двухопорного ротора.

(1.1)

где Сζ и Сη определяются путем численного решения интегральных уравнений.

Следует отметить, что такой подход не может дать точных результатов, так как напряженное состояние участка ротора рассматривается как сумма плоских напряженных состояний в бесконечно тонких слоях d, что не учитывает взаимодействия между этими слоями. Таким образом, соотношение можно рассматривать только как приближенное.

Формула, отражающая зависимость между дополнительным прогибом и глубиной трещины, представленная А.З. Зиле, Ю.Л. Израилевым и М.Н. Руденко в работах [2,3], была получена с помощью метода, основанного на численном решении двумерной осесимметричной задачи теории упругости для тела с трещиной и методов сопротивления материалов. Для трещины серповидной формы в двухопорном роторе эта зависимость имеет вид

(1.2)

где - прогиб вала,1() - глубина трещины, - угловая координата, - номинальное напряжение, Е - модуль Юнга,L1 и L2 – расстояние между опорой и трещиной, RВ, RН –внутренний и наружный радиусы ротора, Р - эмпирический коэффициент.

В [3] проведена экспериментальная проверка данной методики. Сравнение показывает удовлетворительное соответствие расчетных и экспериментальных.

В [4] трещина рассматривается как сосредоточенный шарнир и характеризуется шестью степенями свободы (два линейных смещения и четыре угла поворота)

Uy, Uz, Ly Lz ry rz

Дополнительное угловое перемещение, обусловленное влиянием трещины, определяется как разность между значениями угла поворота слева и справа от трещины:

(1.3)

где индекс r означает справа, L – слева

Сравнивая различные подходы определения потери жесткости ротора из-за наличия в нем трещины, можно сделать следующие выводы: формулы (1.1), (1.2), (1.3) описывают поведение трещины, как поведение сосредоточенного шарнира (т.е. в месте расположения трещины под действием момента возникает дополнительная угловая деформация). В то время как подход, предложенный в [5] учитывает конечную протяженность зоны влияния трещины.

Как уже отмечалось выше, в процессе вращения ротора знакопеременный изгиб приводит к “дыханию трещины”. В процессе “дыхания” трещина переходит из открытого в закрытое состояние, так как изгибающий момент при вращении ротора меняет свою ориентацию относительно трещины. Если в области трещины имеют место отрицательные напряжения, то трещина влияния на жесткость ротора не оказывает. Кроме того, возможны промежуточные положения, когда часть трещины сомкнута, а другая ее часть разомкнута.

В [6] рассмотрен ротор с развитой трещиной, занимающей значительную часть сечения. Размеры трещины характеризуются углом раскрытия . Следовательно, состояние трещины от угла поворота , (где t-время, n-0,1,2…-число оборотов) зависит следующим образом: при - полностью закрыта, при 0 - полностью раскрыта, при и 2 2 - частично раскрыта. Для каждой из указанных 4х фаз в [6] приведены данные для моментов инерции Iu, Iv, Iuv сечения с трещиной.

В работах [7,8,9,10,11,12] авторы выбрали упрощенный механизм “дыхания трещины”. Так, соответственно модели, предложенной в [1,8,11,12,], трещина способна принимать только два положения: либо полностью открыта, либо полностью закрыта (в зависимости от изгибающего момента). Никаких промежуточных положений не рассматривается. В работах [1,11] в процессе изменения изгибающего момента происходит скачкообразное изменение момента инерции I и I В работе [8] изменяется только I В [11] у H. D. Nelson и C. Nataray поведение трещины описывает “переключающая” функция, которая способна принимать два значения

(1.4)

где к – изгиб в месте трещины, - частота вращения, t – время, - безразмерный “фактор трещины”.

Как известно, динамическая система, возбуждаемая параметрически, может иметь зоны неустойчивости. Ротор с трещиной является именно такой системой, поскольку жесткость его изменяется параметрически пропорционально мгновенной площади поверхности трещины.

Относительно вопроса устойчивости мнения различных авторов расходятся. Так, в [1] этой проблеме уделено большое внимание. A. D. Dimaragonas и C. A. Papadopoulos приводят диаграмму устойчивости для основного и побочных резонансов в случае одномассового ротора. В [4] рассмотрена математическая модель свободно опертого ротора диаметром 18 мм и длиной 1м с трещиной посередине пролета. Задача решалась модифицированным методом Ньюмарка – Уилсона. По мнению авторов, полученные результаты позволяют дать полную картину вибрации ротора с трещиной. Значительное внимание уделено проблеме устойчивости. Отмечено, что устойчивость ротора с поперечной трещиной находится в зависимости от размеров трещины. При малой трещине область неустойчивости удается обнаружить только в зонах скорости вращения чуть ниже критической 0, а так же в зоне 0 / 2. Причем вторая из этих областей оказывается более узкой, чем первая. По мере роста глубины трещины эти области расширяются, и одновременно появляется новая более узкая область неустойчивости в районе ω0/3. При дальнейшем росте трещины такие области появляются на скоростях 2ω0, 2ω0/3, 2ω0/5. Следует отметить, что математическая модель ротора, используемая авторами в [4] была нелинейной (то есть типа (1.10)), и поэтому более полно описывала поведение ротора с трещиной, чем параметрическая модель, в основе которой лежит больше допущений. Однако на нелинейной модели были получены области неустойчивости в окрестностях скоростей Ω = =2ω0/n где n – целое число, что означает наличие параметрических резонансов (если судить по соответствующему уравнению Матье). Отсюда авторы делают вывод: вибрация горизонтального ротора с трещиной является преимущественно параметрической, т.е. главным значащим фактором является параметрическое изменение жесткости во времени, а не нелинейные эффекты.

В [7] W. G. R. Davies и I. W. Mayes отрицают необходимость построения диаграммы устойчивости для ротора реального турбогенератора, так как с проблемой потери устойчивости, вследствие параметрического изменения жесткости ротора, можно столкнуться только при очень большой (более 50% от диаметра) глубины трещины. Если глубина трещины находится в пределах половины диаметра, то эффект жесткости ротора мал, а демпфирование в подшипниках жидкого типа достаточно велико. Если динамика ротора с трещиной анализируется с целью создания системы диагностики трещин, то, по-видимому, не имеет смысла решать проблему потери устойчивости, так как она может возникнуть только при очень глубоких трещинах, в то время как задачей системы диагностики является не допустить развитие трещин до такого размера, при котором возможна потеря устойчивости или внезапное разрушение.

Расчетные результаты, представленные в работах [2,5,6,8,9,10,11] можно отнести к двум возможным моделям ротора с трещиной:

а) одномассовый ротор,

б) ротор с распределенными параметрами.

Математическая модель ротора в виде сосредоточенной массы на невесомом валу является наиболее простой, но позволяет проследить основные закономерности динамики ротора и определить диагностические появления трещины.

Результаты расчета вибрации одномассового ротора с трещиной и небалансом подробно представлены в [10]. В расчетной схеме J. Schmied и E. Kramer варьировали двумя параметрами: глубиной трещины и фазой небаланса. Авторы отмечают наличие ультрагармонических резонансов на частотах 0,33ω0, 0,5ω0, где ω0 – собственная частота модельного ротора. Спектр вибрации ротора помимо оборотной частоты содержит кратные гармоники. В [10] рассмотрены только 1z, 2z, и 3z гармонические составляющие. Отмечено заметное влияние фазы небаланса на амплитуду первой гармоники. При совпадении фаз небаланса и трещины амплитуда первой гармоники оказывается значительно больше по сравнению со случаем, если трещина и небаланс находятся в противофазе. Имеются определенные различия амплитудно-частотных характеристик (АЧХ) для случаев а) синфазного и б) противофазного расположения небаланса и трещины. В случае а), по мере роста частоты вращения от нуля до резонанса, амплитуда первой гармоники растет монотонно, достигая максимума при , а в случае б) амплитуда между и сначала падает, а затем растет, и достигает максимума при Фазо-частотные характеристики (ФЧХ) также имеют различия для случаев а) и б). Для а) при переходе ротора через резонанс фаза изменяется на радиан (как в случае обычного ротора без трещины). В случае б) фаза совершает скачек на 2 радиан в точке, расположенной между и , а в окрестности = фаза плавно изменяет свое значение на радиан. Амплитуда 2 й и 3 й гармоник от фазы небаланса не зависят.

В [2] авторы также отмечают, что вибрация, вызываемая трещиной, проявляется в основном на критических частотах вращения (оборотной составляющей и частотах равных половине и трети от оборотной составляющей и частотах равных половине и трети оборотной частоты). На рабочей частоте вращения, если она отстроена от критической, амплитуды колебаний будут невелики при трещинах достигающих половины сечения вала. Чем больше жесткость и выше собственная частота ротора, тем менее интенсивны будут его колебания. Авторы также отмечают, что при глубине трещины 15-20% механизм “дыхания’ проявляет себя достаточно слабо даже для гибких роторов. Авторы представляют результаты, из которых видно, что на критической частоте вращения амплитуды вибросмещения идеально отбалансированного ротора могут достигать существенных величин при глубинах трещины менее 10% от диаметра. В качестве диагностических признаков в работе предложено использовать амплитуды 1й и 2й гармоник. Наиболее вероятной причиной их устойчивого роста, а так же изменения фазы, является развивающаяся трещина. Дополнительные признаки трещины в [2] предлагают определять при выбеге (развороте) ротора на критических частотах 1-го и 2-го рода в виде значительного возрастания амплитуд и изменения фаз 1й и 2й гармоник по сравнению с первоначальным уровнем.

В [11] представлены результаты расчетов двухопорного ротора с распределенными параметрами на анизотропных упруго-демпферных опорах. Авторами был использован метод конечных элементов (МКЭ). Присутствие трещины моделировалось с помощью КЭ переменной жесткости. Дефицит жесткости КЭ с трещиной определялся некоторой величиной , которую авторы называют “фактором трещины”. Однако, в работе [11] никак не связана с конкретной глубиной трещины, что не дает возможность проводить сравнение полученных результатов с экспериментом и результатам, полученными другими авторами. При расчетах меняется в пределах 0-0,3 (большая величина соответствует большей глубине трещины). В [11] приведены расчетные графики АЧХ и АФХ ротора с трещиной во вращающейся системе координат. Из графиков видно, что в спектре вибрации присутствуют различные гармоники. (от первой до третьей), для 2 й и 3 й гармоник существуют параметрические резонансы. АФХ для первой гармоники по мере роста частоты вращения изменяется хаотичными скачками. В работе проводится сравнение с экспериментальными данными из другой статьи. Отмечено их качественное совпадение.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее